1,930 research outputs found

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    On Sparse Coding as an Alternate Transform in Video Coding

    Get PDF
    In video compression, specifically in the prediction process, a residual signal is calculated by subtracting the predicted from the original signal, which represents the error of this process. This residual signal is usually transformed by a discrete cosine transform (DCT) from the pixel, into the frequency domain. It is then quantized, which filters more or less high frequencies (depending on a quality parameter). The quantized signal is then entropy encoded usually by a context-adaptive binary arithmetic coding engine (CABAC), and written into a bitstream. In the decoding phase the process is reversed. DCT and quantization in combination are efficient tools, but they are not performing well at lower bitrates and creates distortion and side effect. The proposed method uses sparse coding as an alternate transform which compresses well at lower bitrates, but not well at high bitrates. The decision which transform is used is based on a rate-distortion optimization (RDO) cost calculation to get both transforms in their optimal performance range. The proposed method is implemented in high efficient video coding (HEVC) test model HM-16.18 and high efficient video coding for screen content coding (HEVC-SCC) for test model HM-16.18+SCM-8.7, with a Bjontegaard rate difference (BD-rate) saving, which archives up to 5.5%, compared to the standard

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    A Study on Invisible Digital Image and Video Watermarking Techniques

    Get PDF
    Digital watermarking was introduced as a result of rapid advancement of networked multimedia systems. It had been developed to enforce copyright technologies for cover of copyright possession. This technology is first used for still images however recently they need been developed for different multimedia objects like audio, video etc. Watermarking, that belong to the information hiding field, has seen plenty of research interest. There's a lot of work begin conducted in numerous branches in this field. The image watermarking techniques might divide on the idea of domain like spatial domain or transform domain or on the basis of wavelets. The copyright protection, capacity, security, strength etc are a number of the necessary factors that are taken in account whereas the watermarking system is intended. This paper aims to produce a detailed survey of all watermarking techniques specially focuses on image watermarking types and its applications in today’s world

    A novel semi-fragile forensic watermarking scheme for remote sensing images

    Get PDF
    Peer-reviewedA semi-fragile watermarking scheme for multiple band images is presented. We propose to embed a mark into remote sensing images applying a tree structured vector quantization approach to the pixel signatures, instead of processing each band separately. The signature of themmultispectral or hyperspectral image is used to embed the mark in it order to detect any significant modification of the original image. The image is segmented into threedimensional blocks and a tree structured vector quantizer is built for each block. These trees are manipulated using an iterative algorithm until the resulting block satisfies a required criterion which establishes the embedded mark. The method is shown to be able to preserve the mark under lossy compression (above a given threshold) but, at the same time, it detects possibly forged blocks and their position in the whole image.Se presenta un esquema de marcas de agua semi-frágiles para múltiples imágenes de banda. Proponemos incorporar una marca en imágenes de detección remota, aplicando un enfoque de cuantización del vector de árbol estructurado con las definiciones de píxel, en lugar de procesar cada banda por separado. La firma de la imagen hiperespectral se utiliza para insertar la marca en el mismo orden para detectar cualquier modificación significativa de la imagen original. La imagen es segmentada en bloques tridimensionales y un cuantificador de vector de estructura de árbol se construye para cada bloque. Estos árboles son manipulados utilizando un algoritmo iteractivo hasta que el bloque resultante satisface un criterio necesario que establece la marca incrustada. El método se muestra para poder preservar la marca bajo compresión con pérdida (por encima de un umbral establecido) pero, al mismo tiempo, detecta posiblemente bloques forjados y su posición en la imagen entera.Es presenta un esquema de marques d'aigua semi-fràgils per a múltiples imatges de banda. Proposem incorporar una marca en imatges de detecció remota, aplicant un enfocament de quantització del vector d'arbre estructurat amb les definicions de píxel, en lloc de processar cada banda per separat. La signatura de la imatge hiperespectral s'utilitza per inserir la marca en el mateix ordre per detectar qualsevol modificació significativa de la imatge original. La imatge és segmentada en blocs tridimensionals i un quantificador de vector d'estructura d'arbre es construeix per a cada bloc. Aquests arbres són manipulats utilitzant un algoritme iteractiu fins que el bloc resultant satisfà un criteri necessari que estableix la marca incrustada. El mètode es mostra per poder preservar la marca sota compressió amb pèrdua (per sobre d'un llindar establert) però, al mateix temps, detecta possiblement blocs forjats i la seva posició en la imatge sencera

    Prioritizing Content of Interest in Multimedia Data Compression

    Get PDF
    Image and video compression techniques make data transmission and storage in digital multimedia systems more efficient and feasible for the system's limited storage and bandwidth. Many generic image and video compression techniques such as JPEG and H.264/AVC have been standardized and are now widely adopted. Despite their great success, we observe that these standard compression techniques are not the best solution for data compression in special types of multimedia systems such as microscopy videos and low-power wireless broadcast systems. In these application-specific systems where the content of interest in the multimedia data is known and well-defined, we should re-think the design of a data compression pipeline. We hypothesize that by identifying and prioritizing multimedia data's content of interest, new compression methods can be invented that are far more effective than standard techniques. In this dissertation, a set of new data compression methods based on the idea of prioritizing the content of interest has been proposed for three different kinds of multimedia systems. I will show that the key to designing efficient compression techniques in these three cases is to prioritize the content of interest in the data. The definition of the content of interest of multimedia data depends on the application. First, I show that for microscopy videos, the content of interest is defined as the spatial regions in the video frame with pixels that don't only contain noise. Keeping data in those regions with high quality and throwing out other information yields to a novel microscopy video compression technique. Second, I show that for a Bluetooth low energy beacon based system, practical multimedia data storage and transmission is possible by prioritizing content of interest. I designed custom image compression techniques that preserve edges in a binary image, or foreground regions of a color image of indoor or outdoor objects. Last, I present a new indoor Bluetooth low energy beacon based augmented reality system that integrates a 3D moving object compression method that prioritizes the content of interest.Doctor of Philosoph
    corecore