235 research outputs found

    Semi-Distributed Load Balancing for Massively Parallel Multicomputer Systems

    Get PDF
    This paper presents a semi-distributed approach, for load balancing in large parallel and distributed systems, which is different from the conventional centralized and fully distributed approaches. The proposed strategy uses a two-level hierarchical control by partitioning the interconnection structure of a distributed or multiprocessor system into independent symmetric regions (spheres) centered at some control points. The central points, called schedulers, optimally schedule tasks within their spheres and maintain state information with low overhead. We consider interconnection structures belonging to a number of families of distance transitive graphs for evaluation, and using their algebraic characteristics, show that identification of spheres and their scheduling points is, in general, an NP-complete problem. An efficient solution for this problem is presented by making an exclusive use of a combinatorial structure known as the Hadamard Matrix. Performance of the proposed strategy has been evaluated and compared with an efficient fully distributed strategy, through an extensive simulation study. In addition to yielding high performance in terms of response time and better resource utilization, the proposed strategy incurs less overhead in terms of control messages. It is also shown to be less sensitive to the communication delay of the underlying network

    Parallel Genetic Algorithms with Application to Load Balancing for Parallel Computing

    Get PDF
    A new coarse grain parallel genetic algorithm (PGA) and a new implementation of a data-parallel GA are presented in this paper. They are based on models of natural evolution in which the population is formed of discontinuous or continuous subpopulations. In addition to simulating natural evolution, the intrinsic parallelism in the two PGA\u27s minimizes the possibility of premature convergence that the implementation of classic GA\u27s often encounters. Intrinsic parallelism also allows the evolution of fit genotypes in a smaller number of generations in the PGA\u27s than in sequential GA\u27s, leading to superlinear speed-ups. The PGA\u27s have been implemented on a hypercube and a Connection Machine, and their operation is demonstrated by applying them to the load balancing problem in parallel computing. The PGA\u27s have found near-optimal solutions which are comparable to the solutions of a simulated annealing algorithm and are better than those produced by a sequential GA and by other load balancing methods. On one hand, The PGA\u27s accentuate the advantage of parallel computers for simulating natural evolution. On the other hand, they represent new techniques for load balancing parallel computations

    Experimental analysis of computer system dependability

    Get PDF
    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance

    Fault-Tolerant Load Management for Real-Time Distributed Computer Systems

    Get PDF
    This paper presents a fault-tolerant scheme applicable to any decentralized load balancing algorithms used in soft real-time distributed systems. Using the theory of distance-transitive graphs for representing topologies of these systems, the proposed strategy partitions these systems into independent symmetric regions (spheres) centered at some control points. These central points, called fault-control points, provide a two-level task redundancy and efficiently re-distribute the load of failed nodes within their spheres. Using the algebraic characteristics of these topologies, it is shown that the identification of spheres and fault-control points is, in general, is an NP-complete problem. An efficient solution for this problem is presented by making an exclusive use of a combinatorial structure known as the Hadamard matrix. Assuming a realistic failure-repair system environment, the performance of the proposed strategy has been evaluated and compared with no fault environment, through an extensive and detailed simulation. For our fault-tolerant strategy, we propose two measures of goodness, namely, the percentage of re-scheduled tasks which meet their deadlines and the overhead incurred for fault management. It is shown that using the proposed strategy, up to 80% of the tasks can still meet their deadlines. The proposed strategy is general enough to be applicable to many networks, belonging to a number of families of distance transitive graphs. Through simulation, we have analyzed the sensitivity of this strategy to various system parameters and have shown that the performance degradation due to failures does not depend on these parameter. Also, the probability of a task being lost altogether due to multiple failures has been shown to be extremely low

    Parallelized reliability estimation of reconfigurable computer networks

    Get PDF
    A parallelized system, ASSURE, for computing the reliability of embedded avionics flight control systems which are able to reconfigure themselves in the event of failure is described. ASSURE accepts a grammar that describes a reliability semi-Markov state-space. From this it creates a parallel program that simultaneously generates and analyzes the state-space, placing upper and lower bounds on the probability of system failure. ASSURE is implemented on a 32-node Intel iPSC/860, and has achieved high processor efficiencies on real problems. Through a combination of improved algorithms, exploitation of parallelism, and use of an advanced microprocessor architecture, ASSURE has reduced the execution time on substantial problems by a factor of one thousand over previous workstation implementations. Furthermore, ASSURE's parallel execution rate on the iPSC/860 is an order of magnitude faster than its serial execution rate on a Cray-2 supercomputer. While dynamic load balancing is necessary for ASSURE's good performance, it is needed only infrequently; the particular method of load balancing used does not substantially affect performance

    A parallel implementation of a multisensor feature-based range-estimation method

    Get PDF
    There are many proposed vision based methods to perform obstacle detection and avoidance for autonomous or semi-autonomous vehicles. All methods, however, will require very high processing rates to achieve real time performance. A system capable of supporting autonomous helicopter navigation will need to extract obstacle information from imagery at rates varying from ten frames per second to thirty or more frames per second depending on the vehicle speed. Such a system will need to sustain billions of operations per second. To reach such high processing rates using current technology, a parallel implementation of the obstacle detection/ranging method is required. This paper describes an efficient and flexible parallel implementation of a multisensor feature-based range-estimation algorithm, targeted for helicopter flight, realized on both a distributed-memory and shared-memory parallel computer

    Distributed and Grid Computing: An Analytical Comparison

    Get PDF
    Abstract-CPU utilization is an important aspect of distributed and grid computing environment. The computing nodes can be overloaded, i.e., they can have more jobs than their capacity such that no more jobs can be associated to them and in that case, the load from the overloaded node can be shifted to other nodes those are under loaded(i.e. doing little work or sitting idle). For this, load balancing is required. In load balancing the workload is redistributed among the computing nodes of the system. This improves the job response time and CPU utilization. Dynamic load balancing schemes operate on the decisions that based on the current state of the system. They do not require the previous state of the system for making the load balancing decisions. In this paper, we present an analytical comparison of the various dynamic load balancing schemes in distributed and grid computing environment. This comparison depicts which scheme is better in distributed environment and which is better in grid environment on a particular quality metrics
    corecore