713 research outputs found

    Best Spatial Distributions of Shell Kinematics Over 2D Meshes for Free Vibration Analyses

    Get PDF
    This paper proposes a novel approach to build refined shell models. The focus is on the free vibrations of composite panels, and the node-dependent-kinematics is used to select shell theories node-wise. The methodology shown in this work can provide at least two sets of information. First, it optimizes the use of shell models by indicating the minimum number of refined models to use. Then, it highlights which areas of the structures are more vulnerable to non-classical effects. Moreover, by varying various problem features, e.g., boundary conditions, thickness, and stacking sequence, the influence of those parameters on the modelling strategy is evaluated. The results suggest the predominant influence of thickness and boundary conditions and the possibility to improve the quality of the solution via the proper use of the refinement strategy

    Static and Free Vibration Analyses of Composite Shells Based on Different Shell Theories

    Get PDF
    Equations of motion with required boundary conditions for doubly curved deep and thick composite shells are shown using two formulations. The first is based upon the formulation that was presented initially by Rath and Das (1973, J. Sound and Vib.) and followed by Reddy (1984, J. Engng. Mech. ASCE). In this formulation, plate stiffness parameters are used for thick shells, which reduced the equations to those applicable for shallow shells. This formulation is widely used but its accuracy has not been completely tested. The second formulation is based upon that of Qatu (1995, Compos. Press. Vessl. Indust.; 1999, Int. J. Solids Struct.). In this formulation, the stiffness parameters are calculated by using exact integration of the stress resultant equations. In addition, Qatu considered the radius of twist in his formulation. In both formulations, first order polynomials for in-plane displacements in the z-direction are utilized allowing for the inclusion of shear deformation and rotary inertia effects (first order shear deformation theory or FSDT). Also, FSDTQ has been modified in this dissertation using the radii of each laminate instead of using the radii of mid-plane in the moment of inertias and stress resultants equations. Exact static and free vibration solutions for isotropic and symmetric and anti-symmetric cross-ply cylindrical shells for different length-to-thickness and length-to-radius ratios are obtained using the above theories. Finally, the equations of motion are put together with the equations of stress resultants to arrive at a system of seventeen first-order differential equations. These equations are solved numerically with the aid of General Differential Quadrature (GDQ) method for isotropic, cross-ply, angle-ply and general lay-up cylindrical shells with different boundary conditions using the above mentioned theories. Results obtained using all three theories (FSDT, FSDTQ and modified FSDTQ) are compared with the results available in literature and those obtained using a three-dimensional (3D) analysis. The latter (3D) is used here mainly to test the accuracy of the shell theories presented here

    Static and Free Vibration Analyses of Composite Shells Based on Different Shell Theories

    Get PDF
    Equations of motion with required boundary conditions for doubly curved deep and thick composite shells are shown using two formulations. The first is based upon the formulation that was presented initially by Rath and Das (1973, J. Sound and Vib.) and followed by Reddy (1984, J. Engng. Mech. ASCE). In this formulation, plate stiffness parameters are used for thick shells, which reduced the equations to those applicable for shallow shells. This formulation is widely used but its accuracy has not been completely tested. The second formulation is based upon that of Qatu (1995, Compos. Press. Vessl. Indust.; 1999, Int. J. Solids Struct.). In this formulation, the stiffness parameters are calculated by using exact integration of the stress resultant equations. In addition, Qatu considered the radius of twist in his formulation. In both formulations, first order polynomials for in-plane displacements in the z-direction are utilized allowing for the inclusion of shear deformation and rotary inertia effects (first order shear deformation theory or FSDT). Also, FSDTQ has been modified in this dissertation using the radii of each laminate instead of using the radii of mid-plane in the moment of inertias and stress resultants equations. Exact static and free vibration solutions for isotropic and symmetric and anti-symmetric cross-ply cylindrical shells for different length-to-thickness and length-to-radius ratios are obtained using the above theories. Finally, the equations of motion are put together with the equations of stress resultants to arrive at a system of seventeen first-order differential equations. These equations are solved numerically with the aid of General Differential Quadrature (GDQ) method for isotropic, cross-ply, angle-ply and general lay-up cylindrical shells with different boundary conditions using the above mentioned theories. Results obtained using all three theories (FSDT, FSDTQ and modified FSDTQ) are compared with the results available in literature and those obtained using a three-dimensional (3D) analysis. The latter (3D) is used here mainly to test the accuracy of the shell theories presented here

    A closed-form solution for asymmetric free vibration analysis of composite cylindrical shells with metamaterial honeycomb core layer based on shear deformation theory

    Get PDF
    Asymmetric free vibration analysis of composite cylindrical shells with a honeycomb core layer and adjustable Poisson’s ratio is performed analytically in this study. The equations of motion which are a system of coupled partial differential equations are extracted using Hamilton’s principle by employing the first-order shear deformation theory and they are solved analytically. To study the sensitivity of the results to the different parameters of the honeycomb structure, geometrical parameters, and boundary conditions, a parametric study is presented. It is concluded that for the auxetic composite shell with a negative Poisson’s ratio, by decreasing the Poisson ratio, the frequency decreases. Also, it is shown that by employing the composite shells the weight decreases significantly, while the asymmetric frequency will not change remarkably. By adjusting the Poisson ratio, the frequency variations are studied for a composite shell with a honeycomb core layer. The results are compared with the finite element method and some other references

    Computational approaches to vibration analysis of shells under different boundary conditions – a literature review

    Get PDF
    Shells are important structural elements widely used in various engineering applications ranging from outer space to deep oceans such as rockets, aircrafts, missiles, submarines and automobiles etc. A huge amount of research efforts has been devoted to vibration analysis and dynamic behaviors of the shells. Furthermore, a large variety of shell theories and computational methods have been proposed and developed by researchers. For different cases different computational approaches have been used in literature to study the vibration characteristics of shells. This review is aimed to provide contemporarily relevant survey of papers on vibrational characteristics of shells and identification of various methods and approaches that have been used to study its vibration characteristics. Focus has been kept to important and prominent studies and its compilation in a single paper to help future researchers to identify relevant literature quickly and easily and also help them to apply these approaches to study vibration characteristics of other built up and coupled structures

    Large amplitude vibration of doubly curved FG-GRC laminated panels in thermal environments

    Get PDF
    A study on the large amplitude vibration of doubly curved graphene-reinforced composite (GRC) laminated panels is presented in this paper. A doubly curved panel is made of piece-wise GRC layers with functionally graded (FG) arrangement along the thickness direction of the panel. A GRC layer consists of polymer matrix reinforced by aligned graphene sheets. The material properties of the GRC layers are temperature dependent and can be estimated by the extended Halpin-Tsai micromechanical model. The modelling of the large amplitude vibration of the panels is based on the Reddy’s higher order shear deformation theory and the effects of the von Kármán geometric nonlinearity, the panel-foundation interaction and the temperature variation are included in the derivation of the motion equations of the panels. The solutions for the large amplitude vibration of the doubly curved FG-GRC laminated panels are obtained by applying a two-step perturbation approach. A parametric study is carried out to determine the influences of foundation stiffness, temperature variation, FG distribution pattern, in-plane boundary condition and panel curvature ratio on the natural frequencies and the nonlinear to linear frequency ratios of the doubly curved FG-GRC laminated panels
    • …
    corecore