11,299 research outputs found

    Toward a framework for data quality in cloud-based health information system

    No full text
    This Cloud computing is a promising platform for health information systems in order to reduce costs and improve accessibility. Cloud computing represents a shift away from computing being purchased as a product to be a service delivered over the Internet to customers. Cloud computing paradigm is becoming one of the popular IT infrastructures for facilitating Electronic Health Record (EHR) integration and sharing. EHR is defined as a repository of patient data in digital form. This record is stored and exchanged securely and accessible by different levels of authorized users. Its key purpose is to support the continuity of care, and allow the exchange and integration of medical information for a patient. However, this would not be achieved without ensuring the quality of data populated in the healthcare clouds as the data quality can have a great impact on the overall effectiveness of any system. The assurance of the quality of data used in healthcare systems is a pressing need to help the continuity and quality of care. Identification of data quality dimensions in healthcare clouds is a challenging issue as data quality of cloud-based health information systems arise some issues such as the appropriateness of use, and provenance. Some research proposed frameworks of the data quality dimensions without taking into consideration the nature of cloud-based healthcare systems. In this paper, we proposed an initial framework that fits the data quality attributes. This framework reflects the main elements of the cloud-based healthcare systems and the functionality of EHR

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Horizon Report 2009

    Get PDF
    El informe anual Horizon investiga, identifica y clasifica las tecnologías emergentes que los expertos que lo elaboran prevén tendrán un impacto en la enseñanza aprendizaje, la investigación y la producción creativa en el contexto educativo de la enseñanza superior. También estudia las tendencias clave que permiten prever el uso que se hará de las mismas y los retos que ellos suponen para las aulas. Cada edición identifica seis tecnologías o prácticas. Dos cuyo uso se prevé emergerá en un futuro inmediato (un año o menos) dos que emergerán a medio plazo (en dos o tres años) y dos previstas a más largo plazo (5 años)

    Development of Integrative Bioinformatics Applications using Cloud Computing resources and Knowledge Organization Systems (KOS).

    Get PDF
    Use of semantic web abstractions, in particular of domain neural Knowledge Organization Systems (KOS), to manage distributed, cloud based, integrative bioinformatics infrastructure. This presentation derives from recent publication:

Almeida JS, Deus HF, Maass W. (2010) S3DB core: a framework for RDF generation and management in bioinformatics infrastructures. BMC Bioinformatics. 2010 Jul 20;11(1):387. [PMID 20646315].

These PowerPoint slides were presented at Semantic Web Applications and Tools for Life Sciences December 10th, 2010, Berlin, Germany (http://www.swat4ls.org/2010/progr.php), keynote 9-10 am

    Development of Integrative Bioinformatics Applications using Cloud Computing resources and Knowledge Organization Systems (KOS).

    Get PDF
    Use of semantic web abstractions, in particular of domain neural Knowledge Organization Systems (KOS), to manage distributed, cloud based, integrative bioinformatics infrastructure. This presentation derives from recent publication:

Almeida JS, Deus HF, Maass W. (2010) S3DB core: a framework for RDF generation and management in bioinformatics infrastructures. BMC Bioinformatics. 2010 Jul 20;11(1):387. [PMID 20646315].

These PowerPoint slides were presented at Semantic Web Applications and Tools for Life Sciences December 10th, 2010, Berlin, Germany (http://www.swat4ls.org/2010/progr.php), keynote 9-10 am

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions
    • …
    corecore