2,674 research outputs found

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    Semantic processing of EHR data for clinical research

    Get PDF
    There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data.Comment: Accepted for publication in Journal of Biomedical Informatics, 2015, preprint versio

    Extracting, Transforming and Archiving Scientific Data

    Get PDF
    It is becoming common to archive research datasets that are not only large but also numerous. In addition, their corresponding metadata and the software required to analyse or display them need to be archived. Yet the manual curation of research data can be difficult and expensive, particularly in very large digital repositories, hence the importance of models and tools for automating digital curation tasks. The automation of these tasks faces three major challenges: (1) research data and data sources are highly heterogeneous, (2) future research needs are difficult to anticipate, (3) data is hard to index. To address these problems, we propose the Extract, Transform and Archive (ETA) model for managing and mechanizing the curation of research data. Specifically, we propose a scalable strategy for addressing the research-data problem, ranging from the extraction of legacy data to its long-term storage. We review some existing solutions and propose novel avenues of research.Comment: 8 pages, Fourth Workshop on Very Large Digital Libraries, 201

    Data-driven Job Search Engine Using Skills and Company Attribute Filters

    Full text link
    According to a report online, more than 200 million unique users search for jobs online every month. This incredibly large and fast growing demand has enticed software giants such as Google and Facebook to enter this space, which was previously dominated by companies such as LinkedIn, Indeed and CareerBuilder. Recently, Google released their "AI-powered Jobs Search Engine", "Google For Jobs" while Facebook released "Facebook Jobs" within their platform. These current job search engines and platforms allow users to search for jobs based on general narrow filters such as job title, date posted, experience level, company and salary. However, they have severely limited filters relating to skill sets such as C++, Python, and Java and company related attributes such as employee size, revenue, technographics and micro-industries. These specialized filters can help applicants and companies connect at a very personalized, relevant and deeper level. In this paper we present a framework that provides an end-to-end "Data-driven Jobs Search Engine". In addition, users can also receive potential contacts of recruiters and senior positions for connection and networking opportunities. The high level implementation of the framework is described as follows: 1) Collect job postings data in the United States, 2) Extract meaningful tokens from the postings data using ETL pipelines, 3) Normalize the data set to link company names to their specific company websites, 4) Extract and ranking the skill sets, 5) Link the company names and websites to their respective company level attributes with the EVERSTRING Company API, 6) Run user-specific search queries on the database to identify relevant job postings and 7) Rank the job search results. This framework offers a highly customizable and highly targeted search experience for end users.Comment: 8 pages, 10 figures, ICDM 201

    Km4City Ontology Building vs Data Harvesting and Cleaning for Smart-city Services

    Get PDF
    Presently, a very large number of public and private data sets are available from local governments. In most cases, they are not semantically interoperable and a huge human effort would be needed to create integrated ontologies and knowledge base for smart city. Smart City ontology is not yet standardized, and a lot of research work is needed to identify models that can easily support the data reconciliation, the management of the complexity, to allow the data reasoning. In this paper, a system for data ingestion and reconciliation of smart cities related aspects as road graph, services available on the roads, traffic sensors etc., is proposed. The system allows managing a big data volume of data coming from a variety of sources considering both static and dynamic data. These data are mapped to a smart-city ontology, called KM4City (Knowledge Model for City), and stored into an RDF-Store where they are available for applications via SPARQL queries to provide new services to the users via specific applications of public administration and enterprises. The paper presents the process adopted to produce the ontology and the big data architecture for the knowledge base feeding on the basis of open and private data, and the mechanisms adopted for the data verification, reconciliation and validation. Some examples about the possible usage of the coherent big data knowledge base produced are also offered and are accessible from the RDF-Store and related services. The article also presented the work performed about reconciliation algorithms and their comparative assessment and selection

    A systematic approach to atomicity decomposition in Event-B

    No full text
    Event-B is a state-based formal method that supports a refinement process in which an abstract model is elaborated towards an implementation in a step-wise manner. One weakness of Event-B is that control flow between events is typically modelled implicitly via variables and event guards. While this fits well with Event-B refinement, it can make models involving sequencing of events more difficult to specify and understand than if control flow was explicitly specified. New events may be introduced in Event-B refinement and these are often used to decompose the atomicity of an abstract event into a series of steps. A second weakness of Event-B is that there is no explicit link between such new events that represent a step in the decomposition of atomicity and the abstract event to which they contribute. To address these weaknesses, atomicity decomposition diagrams support the explicit modelling of control flow and refinement relationships for new events. In previous work,the atomicity decomposition approach has been evaluated manually in the development of two large case studies, a multi media protocol and a spacecraft sub-system. The evaluation results helped us to develop a systematic definition of the atomicity decomposition approach, and to develop a tool supporting the approach. In this paper we outline this systematic definition of the approach, the tool that supports it and evaluate the contribution that the tool makes
    corecore