38,554 research outputs found

    A development of self-tuning quantitative feedback theory

    Get PDF
    This paper presents a development of self-tuning Quantitative Feedback Theory (QFT) for a non linear system. QFT is one type of robust controller which deals with plant uncertainty. The performance of robust controller for any uncertain plant is guaranteed based on pre-defined specifications. Meanwhile, self-tuning controller is one type of adaptive controller which also meant to solve the same control problem, however for slower plant drift. By combining both adaptive and robust controllers, both robust and adaptive performance can be achieved. The proposed algorithm is tested on a chosen case study, grain dryer plant. Grain dryer is a non linear plant with uncertainty as the characteristics of the plant can be affected by environmental changes, manufacturing tolerance and input/output disturbance. Based on the results obtained from this case study, the superiority of the proposed self-tuning QFT has been proven. From the comparison test conducted between self-tuning and standard QFT-based controllers, the proposed method produced more desirable response in terms of faster settling time, less percentage of overshoot with reduced ringing, smaller control effort required and wider leverage of uncertainty range

    Design of QFT-based self-tuning deadbeat controller

    Get PDF
    This paper presents a design method of self-tuning Quantitative Feedback Theory (QFT) by using improved deadbeat control algorithm. QFT is a technique to achieve robust control with pre-defined specifications whereas deadbeat is an algorithm that could bring the output to steady state with minimum step size. Nevertheless, usually there are large peaks in the deadbeat response.By integrating QFT specifications into deadbeat algorithm, the large peaks could be tolerated. On the other hand, emerging QFT with adaptive element will produce a robust controller with wider coverage of uncertainty. By combining QFT-based deadbeat algorithm and adaptive element, superior controller that is called self tuning QFT-based deadbeat controller could be achieved. The output response that is fast, robust and adaptive is expected. Using a grain dryer plant model as a pilot case-study, the performance of the proposed method has been evaluated and analyzed. Grain drying process is very complex with highly nonlinear behaviour, long delay, affected by environmental changes and affected by disturbances. Performance comparisons have been performed between the proposed self-tuning QFT-based deadbeat, standard QFT and standard dead-beat controllers. The efficiency of the self-tuning QFT based dead-beat controller has been proven from the tests results in terms of controller’s parameters are updated online, less percentage of overshoot and settling time especially when there are variations in the plant

    Implementation of self-tuning control for turbine generators

    Get PDF
    PhD ThesisThis thesis documents the work that has been done towards the development of a 'practical' self-tuning controller for turbine generator plant. It has been shown by simulation studies and practical investigations using a micro-alternator system that a significant enhancement in the overall performance in terms of control and stability can be achieved by improving the primary controls of a turbine generator using self-tuning control. The self-tuning AVR is based on the Generalised Predictive Control strategy. The design of the controller has been done using standard off-the-shelf microprocessor hardware and structured software design techniques. The proposed design is thus flexible, cost-effective, and readily applicable to 'real' generating plant. Several practical issues have been tackled during the design of the self-tuning controller and techniques to improve the robustness of the measurement system, controller, and parameter estimator have been proposed and evaluated. A simple and robust measurement system for plant variables based on software techniques has been developed and its suitability for use in the self-tuning controller has been practically verified. The convergence, adaptability, and robustness aspects of the parameter estimator have been evaluated and shown to be suitable for long-term operation in 'real' self-tuning controllers. The self-tuning AVR has been extensively evaluated under normal and fault conditions of the turbine generator. It has been shown that this new controller is superior in performance when compared with a conventional lag-lead type of fixed-parameter digital AVR. The use of electrical power as a supplementary feedback signal in the new AVR is shown to further improve the dynamic stability of the system. The self-tuning AVR has been extended to a multivariable integrated self-tuning controller which combines the AVR and EHG functions. The flexibility of the new AVR to enable its expansion for more complex control applications has thus been demonstrated. Simple techniques to incorporate constraints on control inputs without upsetting the loop decoupling property of the multivariable controller have been proposed and evaluated. It is shown that a further improvement in control performance and stability can be achieved by the integrated controller.Parsons Turbine Generators Ltd

    Self-tuning dead beat PD controller for pitch angle control of a bench-top helicopter

    Get PDF
    This paper presents an improved robust Proportional Derivative controller for a 3-Degree-of-Freedom (3-DOF) bench-top helicopter by using adaptive methodology. Bench-top helicopter is a laboratory scale helicopter used for experimental purposes which is widely used in teaching laboratory and research. Proportional Derivative controller has been developed for a 3-DOF bench-top helicopter by Quanser. Experiments showed that the transient response of designed PD controller has very large steady state error i.e., 50%, which is very serious. The objective of this research is to improve the performance of existing pitch angle control of PD controller on the bench-top helicopter by integration of PD controller with adaptive controller. Usually standard adaptive controller will produce zero steady state error, however response time to reach desired set point is large. Therefore, this paper proposed an adaptive with deadbeat algorithm to overcome the limitations. The output response that is fast, robust and updated online is expected. Performance comparisons have been performed between the proposed self-tuning deadbeat PD controller and standard PD controller. The efficiency of the self-tuning dead beat controller has been proven from the tests results in terms of faster settling time, zero steady state error and capability of the controller to be updated online

    Self-tuning deadbeat PD controller for pitch angle control of a bench-top helicopter

    Get PDF
    This paper presents an improved robust Proportional Derivative controller for a 3-Degree-of-Freedom (3-DOF) bench-top helicopter by using adaptive methodology. Bench-top helicopter is a laboratory scale helicopter used for experimental purposes which is widely used in teaching laboratory and research. Proportional Derivative controller has been developed for a 3-DOF bench-top helicopter by Quanser. Experiments showed that the transient response of designed PD controller has very large steady state error i.e., 50%, which is very serious. The objective of this research is to improve the performance of existing pitch angle control of PD controller on the bench-top helicopter by integration of PD controller with adaptive controller. Usually standard adaptive controller will produce zero steady state error; however response time to reach desired set point is large. Therefore, this paper proposed an adaptive with deadbeat algorithm to overcome the limitations. The output response that is fast, robust and updated online is expected. Performance comparisons have been performed between the proposed self-tuning deadbeat PD controller and standard PD controller. The efficiency of the self-tuning dead beat controller has been proven from the tests results in terms of faster settling time, zero steady state error and capability of the controller to be updated online

    A Self-Tuning zSlices-Based General Type-2 Fuzzy PI Controller

    Get PDF
    The interval type-2 fuzzy Proportional-Integral (PI) controller (IT2-FPI) might be able to handle high levels of uncertainties to produce a satisfactory control performance, which could be potentially due to the robust performance as a result of the smoother control surface around the steady state. However, the transient state and disturbance rejection performance of the IT2-FPI may degrade in comparison with the type-1 fuzzy PI (T1-FPI) counterpart. This drawback can be resolved via general type-2 fuzzy PI controllers which can provide a tradeoff between the robust control performance of the IT2-FPI and the acceptable transient and disturbance rejection performance of the type-1 PI controllers. In this paper, we will present a zSlices-based general type-2 fuzzy PI controller (zT2-FPI), where the secondary membership functions (SMFs) of the antecedent general type-2 fuzzy sets are adjusted in an online manner. We will examine the effect of the SMF on the closed-system control performance to investigate their induced performance improvements. This paper will focus on the case followed in conventional or self-tuning fuzzy controller design strategies, where the aim is to decrease the integral action sufficiently around the steady state to have robust system performance against noises and parameter variations. The zSlices approach will give the opportunity to construct the zT2-FPI controller as a collection of IT2-FPI and T1-FPI controllers. We will present a new way to design a zT2-FPI controller based on a single tuning parameter where the features of T1-FPI (speed) and IT2-FPI (robustness) are combined without increasing the computational complexity much when compared with the IT2-FPI structure. This will allow the proposed zT2-FPI controller to achieve the desired transient state response and provide an efficient disturbance rejection and robust control performance. We will present several simulation studies on benchmark systems, in addition to real-world experiments that were performed using the PIONEER 3-DX mobile robot that will act as a platform to evaluate the proposed systems. The results will show that the control performance of the self-tuning zT2-FPI control structure enhances both the transient state and disturbance rejection performances when compared with the type-1 and IT2-FPI counterparts. In addition, the self-tuning zT2-FPI is more robust to disturbances, noise, and uncertainties when compared with the type-1 and interval type-2 fuzzy counterparts

    A comparative study of conventional PID and intelligent Fuzzy-PID FordDC motor speed control

    Get PDF
    The development of a Self Tuning Fuzzy proportional-integral-derivative (PID) controller was done to be compared with the conventional controller that is being used in a direct current (DC) motor. Simulation study is used to overcome the appearance of nonlinearities and uncertainties in the system with the proposed controller for the armature voltage controlled DC motors. Each parameter of the Fuzzy-PID controller is self tuned using 49 fuzzy rules in the fuzzy logic controller. The proportional, integral and derivative (KP,KI,KD) gains of the PID controller is being tuned by the controller. Different types of membership functions are evaluated in the fuzzy control and the best performance will be used in Fuzzy-PID for comparative analysis with the conventional PID.The FIS editor from MATLAB defines the membership function and the rules. Load disturbances from a variety of speed response and the step response are simulated from different scenarios.The Fuzzy PID has resulted to be more robust and it is insensitive to variations in the parameter

    Intelligent tracking control of a DC motor driver using self-organizing TSK type fuzzy neural networks

    Get PDF
    [[abstract]]In this paper, a self-organizing Takagi–Sugeno–Kang (TSK) type fuzzy neural network (STFNN) is proposed. The self-organizing approach demonstrates the property of automatically generating and pruning the fuzzy rules of STFNN without the preliminary knowledge. The learning algorithms not only extract the fuzzy rule of STFNN but also adjust the parameters of STFNN. Then, an adaptive self-organizing TSK-type fuzzy network controller (ASTFNC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller uses an STFNN to approximate an ideal controller, and the robust compensator is designed to eliminate the approximation error in the Lyapunov stability sense without occurring chattering phenomena. Moreover, a proportional-integral (PI) type parameter tuning mechanism is derived to speed up the convergence rates of the tracking error. Finally, the proposed ASTFNC system is applied to a DC motor driver on a field-programmable gate array chip for low-cost and high-performance industrial applications. The experimental results verify the system stabilization and favorable tracking performance, and no chattering phenomena can be achieved by the proposed ASTFNC scheme.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    Speed control of separately excited DC motor using self tuned fuzzy PID controller

    Get PDF
    In this project we have designed a separately excited DC motor whose speed can be controlled using PID controller. The proportional, integral and derivate (KP, KI, KD) gains of the PID controller are adjusted according to FUZZY LOGIC. First, the fuzzy logic controller is designed according to fuzzy rules so that the systems are fundamentally robust. There are 25 fuzzy rules for self-tuning of each parameter of PID controller. The FLC has two inputs. One is the motor speed error between the reference and actual speed and the second is change in speed error (speed error derivative).Secondly, the output of the FLC i.e. the parameters of PID controller are used to control the speed of the separately excited DC Motor. The study shows that both precise characters of PID controllers and flexible characters of fuzzy controller are present in fuzzy self-tuning PID controller. The fuzzy self-tuning approach implemented on a conventional PID structure was able to improve the dynamic as well as the static response of the system. Comparison between the conventional output and the fuzzy self-tuning output was done on the basis of the simulation result obtained by MATLAB. The simulation results demonstrate that the designed self-tuned PID controller realize a good dynamic behavior of the DC motor, a perfect speed tracking with less rise and settling time, minimum overshoot, minimum steady state error and give better performance compared to conventional PID controller
    corecore