19 research outputs found

    High Voltage and Nanoscale CMOS Integrated Circuits for Particle Physics and Quantum Computing

    Get PDF

    Digital ADCs and ultra-wideband RF circuits for energy constrained wireless applications by Denis Clarke Daly.

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 173-183).Ongoing advances in semiconductor technology have enabled a multitude of portable, low power devices like cellular phones and wireless sensors. Most recently, as transistor device geometries reach the nanometer scale, transistor characteristics have changed so dramatically that many traditional circuits and architectures are no longer optimal and/or feasible. As a solution, much research has focused on developing 'highly digital' circuits and architectures that are tolerant of the increased leakage, variation and degraded voltage headrooms associated with advanced CMOS processes. This thesis presents several highly digital, mixed-signal circuits and architectures designed for energy constrained wireless applications. First, as a case study, a highly digital, voltage scalable flash ADC is presented. The flash ADC, implemented in 0.18 [mu]m CMOS, leverages redundancy and calibration to achieve robust operation at supply voltages from 0.2 V to 0.9 V. Next, the thesis expands in scope to describe a pulsed, noncoherent ultra-wideband transceiver chipset, implemented in 90 nm CMOS and operating in the 3-to-5 GHz band. The all-digital transmitter employs capacitive combining and pulse shaping in the power amplifier to meet the FCC spectral mask without any off-chip filters. The noncoherent receiver system-on-chip achieves both energy efficiency and high performance by employing simple amplifier and ADC structures combined with extensive digital calibration. Finally, the transceiver chipset is integrated in a complete system for wireless insect flight control.(cont.) Through the use of a flexible PCB and 3D die stacking, the total weight of the electronics is kept to 1 g, within the carrying capacity of an adult Manduca sexta moth. Preliminary wireless flight control of a moth in a wind tunnel is demonstrated.Ph.D

    A full-custom digital-signal-processing unit for real-time cortical blood flow monitoring

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    NASA SERC 1990 Symposium on VLSI Design

    Get PDF
    This document contains papers presented at the first annual NASA Symposium on VLSI Design. NASA's involvement in this event demonstrates a need for research and development in high performance computing. High performance computing addresses problems faced by the scientific and industrial communities. High performance computing is needed in: (1) real-time manipulation of large data sets; (2) advanced systems control of spacecraft; (3) digital data transmission, error correction, and image compression; and (4) expert system control of spacecraft. Clearly, a valuable technology in meeting these needs is Very Large Scale Integration (VLSI). This conference addresses the following issues in VLSI design: (1) system architectures; (2) electronics; (3) algorithms; and (4) CAD tools

    Circuit design in complementary organic technologies

    Get PDF

    Nano-Watt Modular Integrated Circuits for Wireless Neural Interface.

    Full text link
    In this work, a nano-watt modular neural interface circuit is proposed for ECoG neuroprosthetics. The main purposes of this work are threefold: (1) optimizing the power-performance of the neural interface circuits based on ECoG signal characteristics, (2) equipping a stimulation capability, and (3) providing a modular system solution to expand functionality. To achieve these aims, the proposed system introduces the following contributions/innovations: (1) power-noise optimization based on the ECoG signal driven analysis, (2) extreme low-power analog front-ends, (3) Manchester clock-edge modulation clock data recovery, (4) power-efficient data compression, (5) integrated stimulator with fully programmable waveform, (6) wireless signal transmission through skin, and (7) modular expandable design. Towards these challenges and contributions, three different ECoG neural interface systems, ENI-1, ENI-16, and ENI-32, have been designed, fabricated, and tested. The first ENI system(ENI-1) is a one-channel analog front-end and fabricated in a 0.25µm CMOS process with chopper stabilized pseudo open-loop preamplifier and area-efficient SAR ADC. The measured channel power, noise and area are 1.68µW at 2.5V power-supply, 1.69µVrms (NEF=2.43), and 0.0694mm^2, respectively. The fabricated IC is packaged with customized miniaturized package. In-vivo human EEG is successfully measured with the fabricated ENI-1-IC. To demonstrate a system expandability and wireless link, ENI-16 IC is fabricated in 0.25µm CMOS process and has sixteen channels with a push-pull preamplifier, asynchronous SAR ADC, and intra-skin communication(ISCOM) which is a new way of transmitting the signal through skin. The measured channel power, noise and area are 780nW, 4.26µVrms (NEF=5.2), and 2.88mm^2, respectively. With the fabricated ENI-16-IC, in-vivo epidural ECoG from monkey is successfully measured. As a closed-loop system, ENI-32 focuses on optimizing the power performance based on a bio-signal property and integrating stimulator. ENI-32 is fabricated in 0.18µm CMOS process and has thirty-two recording channels and four stimulation channels with a cyclic preamplifier, data compression, asymmetric wireless transceiver (Tx/Rx). The measured channel power, noise and area are 140nW (680nW including ISCOM), 3.26µVrms (NEF=1.6), and 5.76mm^2, respectively. The ENI-32 achieves an order of magnitude power reduction while maintaining the system performance. The proposed nano-watt ENI-32 can be the first practical wireless closed-loop solution with a practically miniaturized implantable device.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98064/1/schang_1.pd

    A Low-Power Silicon-Photomultiplier Readout ASIC for the CALICE Analog Hadronic Calorimeter

    Get PDF
    The future e + e − collider experiments, such as the international linear collider, provide precise measurements of the heavy bosons and serve as excellent tests of the underlying fundamental physics. To reconstruct these bosons with an unprecedented resolution from their multi-jet final states, a detector system employing the particle flow approach has been proposed, requesting calorimeters with imaging capabilities. The analog hadron calorimeter based on the SiPM-on-tile technology is one of the highly granular candidates of the imaging calorimeters. To achieve the compactness, the silicon-photomultiplier (SiPM) readout electronics require a low-power monolithic solution. This thesis presents the design of such an application-specific integrated circuit (ASIC) for the charge and timing readout of the SiPMs. The ASIC provides precise charge measurement over a large dynamic range with auto-triggering and local zero-suppression functionalities. The charge and timing information are digitized using channel-wise analog-to-digital and time-to-digital converters, providing a fully integrated solution for the SiPM readout. Dedicated to the analog hadron calorimeter, the power-pulsing technique is applied to the full chip to meet the stringent power consumption requirement. This work also initializes the commissioning of the calorimeter layer with the use of the designed ASIC. An automatic calibration procedure has been developed to optimized the configuration settings for the chip. The new calorimeter base unit with the designed ASIC has been produced and its functionality has been tested
    corecore