43 research outputs found

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Dynamic state estimation for mobile robots

    Get PDF
    The scientific goal of this thesis is to tackle different approaches for effective state estimation and modelling of relevant problems in the context of mobile robots. The starting point of this dissertation is the concept of probabilistic robotics, an emerging paradigm that combines state-of-the-art methods with the classic probabilistic theory, developing stochastic frameworks for understanding the uncertain nature of the interaction between a robot and its environment. This allows introducing relevant concepts which are the foundation of the localisation system implemented on the main experimental platform used on this dissertation. An accurate estimation of the position of a robot with respect to a fixed frame is fundamental for building navigation systems that can work in dynamic unstructured environments. This development also allows introducing additional contributions related with global localisation, dynamic obstacle avoidance, path planning and position tracking problems. Kinematics on generalised manipulators are characterised for dealing with complex nonlinear systems. Nonlinear formulations are needed to properly model these systems, which are not always suitable for real-time realisation, lacking analytic formulations in most cases. In this context, this thesis tackles the serial-parallel dual kinematic problem with a novel approach, demonstrating state-of-the-art accuracy and real-time performance. With a spatial decomposition method, the forward kinematics problem on parallel robots and the inverse kinematics problem on serial manipulators is solved modelling the nonlinear behaviour of the pose space using Support Vector Machines. The results are validated on different topologies with the analytic solution for such manipulators, which demonstrates the applicability of the proposed method. Modelling and control of complex dynamical systems is another relevant field with applications on mobile robots. Nonlinear techniques are usually applied to tackle problems like feature or object tracking. However, some nonlinear integer techniques applied for tasks like position tracking in mobile robots with complex dynamics have limited success when modelling such systems. Fractional calculus has demonstrated to be suitable to model complex processes like viscoelasticity or super diffusion. These tools, that take advantage of the generalization of the derivative and integral operators to a fractional order, have been applied to model and control different topics related with robotics in recent years with remarkable success. With the proposal of a fractional-order PI controller, a suitable controller design method is presented to solve the position tracking problem. This is applied to control the distance of a self-driving car with respect to an objective, which can also be applied to other tracking applications like following a navigation path. Furthermore, this thesis introduces a novel fractional-order hyperchaotic system, stabilised with a full-pseudo-state-feedback controller and a located feedback method. This theoretical contribution of a chaotic system is introduced hoping to be useful in this context. Chaos theory has recently started to be applied to study manipulators, biped robots and autonomous navigation, achieving new and promising results, highlighting the uncertain and chaotic nature which also has been found on robots. All together, this thesis is devoted to different problems related with dynamic state estimation for mobile robots, proposing specific contributions related with modelling and control of complex nonlinear systems. These findings are presented in the context of a self-driving electric car, Verdino, jointly developed in collaboration with the Robotics Group of Universidad de La Laguna (GRULL)

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore