36,136 research outputs found

    Self organization of tilts in relay enhanced networks: a distributed solution

    Get PDF
    Despite years of physical-layer research, the capacity enhancement potential of relays is limited by the additional spectrum required for Base Station (BS)-Relay Station (RS) links. This paper presents a novel distributed solution by exploiting a system level perspective instead. Building on a realistic system model with impromptu RS deployments, we develop an analytical framework for tilt optimization that can dynamically maximize spectral efficiency of both the BS-RS and BS-user links in an online manner. To obtain a distributed self-organizing solution, the large scale system-wide optimization problem is decomposed into local small scale subproblems by applying the design principles of self-organization in biological systems. The local subproblems are non-convex, but having a very small scale, can be solved via standard nonlinear optimization techniques such as sequential quadratic programming. The performance of the developed solution is evaluated through extensive simulations for an LTE-A type system and compared against a number of benchmarks including a centralized solution obtained via brute force, that also gives an upper bound to assess the optimality gap. Results show that the proposed solution can enhance average spectral efficiency by up to 50% compared to fixed tilting, with negligible signaling overheads. The key advantage of the proposed solution is its potential for autonomous and distributed implementation

    Precursors of catastrophe in the BTW, Manna and random fiber bundle models of failure

    Full text link
    We have studied precursors of the global failure in some self-organised critical models of sand-pile (in BTW and Manna models) and in the random fiber bundle model (RFB). In both BTW and Manna model, as one adds a small but fixed number of sand grains (heights) to any central site of the stable pile, the local dynamics starts and continues for an average relaxation time (\tau) and an average number of topplings (\Delta) spread over a radial distance (\xi). We find that these quantities all depend on the average height (h_{av}) of the pile and they all diverge as (h_{av}) approaches the critical height (h_{c}) from below: (\Delta) (\sim (h_{c}-h_{av}))(^{-\delta}), (\tau \sim (h_{c}-h_{av})^{-\gamma}) and (\xi) (\sim) ((h_{c}-h_{av})^{-\nu}). Numerically we find (\delta \simeq 2.0), (\gamma \simeq 1.2) and (\nu \simeq 1.0) for both BTW and Manna model in two dimensions. In the strained RFB model we find that the breakdown susceptibility (\chi) (giving the differential increment of the number of broken fibers due to increase in external load) and the relaxation time (\tau), both diverge as the applied load or stress (\sigma) approaches the network failure threshold (\sigma_{c}) from below: (\chi) (\sim) ((\sigma_{c}) (-)(\sigma)^{-1/2}) and (\tau) (\sim) ((\sigma_{c}) (-)(\sigma)^{-1/2}). These self-organised dynamical models of failure therefore show some definite precursors with robust power laws long before the failure point. Such well-characterised precursors should help predicting the global failure point of the systems in advance.Comment: 13 pages, 9 figures (eps

    A Self-organising Model of Market with Single Commodity

    Full text link
    We have studied here the self-organising features of the dynamics of a model market, where the agents `trade' for a single commodity with their money. The model market consists of fixed numbers of economic agents, money supply and commodity. We demonstrate that the model, apart from showing a self-organising behaviour, indicates a crucial role for the money supply in the market and also its self-organising behaviour is seen to be significantly affected when the money supply becomes less than the optimum. We also observed that this optimal money supply level of the market depends on the amount of `frustration' or scarcity in the commodity market.Comment: 8 pages, 3 figures (encapsulated postscript

    Self organising cloud cells: a resource efficient network densification strategy

    Get PDF
    Network densification is envisioned as the key enabler for 2020 vision that requires cellular systems to grow in capacity by hundreds of times to cope with unprecedented traffic growth trends being witnessed since advent of broadband on the move. However, increased energy consumption and complex mobility management associated with network densifications remain as the two main challenges to be addressed before further network densification can be exploited on a wide scale. In the wake of these challenges, this paper proposes and evaluates a novel dense network deployment strategy for increasing the capacity of future cellular systems without sacrificing energy efficiency and compromising mobility performance. Our deployment architecture consists of smart small cells, called cloud nodes, which provide data coverage to individual users on a demand bases while taking into account the spatial and temporal dynamics of user mobility and traffic. The decision to activate the cloud nodes, such that certain performance objectives at system level are targeted, is carried out by the overlaying macrocell based on a fuzzy-logic framework. We also compare the proposed architecture with conventional macrocell only deployment and pure microcell-based dense deployment in terms of blocking probability, handover probability and energy efficiency and discuss and quantify the trade-offs therein

    New Ideas for Brain Modelling

    Full text link
    This paper describes some biologically-inspired processes that could be used to build the sort of networks that we associate with the human brain. New to this paper, a 'refined' neuron will be proposed. This is a group of neurons that by joining together can produce a more analogue system, but with the same level of control and reliability that a binary neuron would have. With this new structure, it will be possible to think of an essentially binary system in terms of a more variable set of values. The paper also shows how recent research associated with the new model, can be combined with established theories, to produce a more complete picture. The propositions are largely in line with conventional thinking, but possibly with one or two more radical suggestions. An earlier cognitive model can be filled in with more specific details, based on the new research results, where the components appear to fit together almost seamlessly. The intention of the research has been to describe plausible 'mechanical' processes that can produce the appropriate brain structures and mechanisms, but that could be used without the magical 'intelligence' part that is still not fully understood. There are also some important updates from an earlier version of this paper

    Distributed and Centralized Task Allocation: When and Where to Use Them

    No full text
    Self-organisation is frequently advocated as the solution for managing large, dynamic systems. Distributed algorithms are implicitly designed for infinitely large problems, while small systems are regarded as being controllable using traditional, centralised approaches. Many real-world systems, however, do not fit conveniently into these "small" or "large" categories, resulting in a range of cases where the optimal solution is ambiguous. This difficulty is exacerbated by enthusiasts of either approach constructing problems that suit their preferred control architecture. We address this ambiguity by building an abstract model of task allocation in a community of specialised agents. We are inspired by the problem of work distribution in distributed satellite systems, but the model is also relevant to the resource allocation problems in distributed robotics, autonomic computing and wireless sensor networks. We compare the behaviour of a self-organising, market-based task allocation strategy to a classical approach that uses a central controller with global knowledge. The objective is not to prove one mechanism inherently superior to the other; instead we are interested in the regions of problem space where each of them dominates. Simulation is used to explore the trade-off between energy consumption and robustness in a system of intermediate size, with fixed communication costs and varying rates of component failure. We identify boundaries between regions in the parameter space where one or the other architecture will be favoured. This allows us to derive guidelines for system designers, thus contributing to the development of a disciplined approach to controlling distributed systems using self-organising mechanisms

    A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks

    Full text link
    Among the many possible approaches for the parallelization of self-organizing networks, and in particular of growing self-organizing networks, perhaps the most common one is producing an optimized, parallel implementation of the standard sequential algorithms reported in the literature. In this paper we explore an alternative approach, based on a new algorithm variant specifically designed to match the features of the large-scale, fine-grained parallelism of GPUs, in which multiple input signals are processed at once. Comparative tests have been performed, using both parallel and sequential implementations of the new algorithm variant, in particular for a growing self-organizing network that reconstructs surfaces from point clouds. The experimental results show that this approach allows harnessing in a more effective way the intrinsic parallelism that the self-organizing networks algorithms seem intuitively to suggest, obtaining better performances even with networks of smaller size.Comment: 17 page

    FPGA-based Anomalous trajectory detection using SOFM

    Get PDF
    A system for automatically classifying the trajectory of a moving object in a scene as usual or suspicious is presented. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a reconfigurable hardware architecture (Field Programmable Gate Array) to cluster trajectories acquired over a period, in order to detect novel ones. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 15\% classification error, showing the robustness of our approach over others in literature and the speed-up over the use of conventional microprocessor as compared to the use of an off-the-shelf FPGA prototyping board
    • ā€¦
    corecore