55 research outputs found

    Integrating modern business applications with objectified legacy systems

    Get PDF

    Ami-deu : un cadre sémantique pour des applications adaptables dans des environnements intelligents

    Get PDF
    Cette thèse vise à étendre l’utilisation de l'Internet des objets (IdO) en facilitant le développement d’applications par des personnes non experts en développement logiciel. La thèse propose une nouvelle approche pour augmenter la sémantique des applications d’IdO et l’implication des experts du domaine dans le développement d’applications sensibles au contexte. Notre approche permet de gérer le contexte changeant de l’environnement et de générer des applications qui s’exécutent dans plusieurs environnements intelligents pour fournir des actions requises dans divers contextes. Notre approche est mise en œuvre dans un cadriciel (AmI-DEU) qui inclut les composants pour le développement d’applications IdO. AmI-DEU intègre les services d’environnement, favorise l’interaction de l’utilisateur et fournit les moyens de représenter le domaine d’application, le profil de l’utilisateur et les intentions de l’utilisateur. Le cadriciel permet la définition d’applications IoT avec une intention d’activité autodécrite qui contient les connaissances requises pour réaliser l’activité. Ensuite, le cadriciel génère Intention as a Context (IaaC), qui comprend une intention d’activité autodécrite avec des connaissances colligées à évaluer pour une meilleure adaptation dans des environnements intelligents. La sémantique de l’AmI-DEU est basée sur celle du ContextAA (Context-Aware Agents) – une plateforme pour fournir une connaissance du contexte dans plusieurs environnements. Le cadriciel effectue une compilation des connaissances par des règles et l'appariement sémantique pour produire des applications IdO autonomes capables de s’exécuter en ContextAA. AmI- DEU inclut également un outil de développement visuel pour le développement et le déploiement rapide d'applications sur ContextAA. L'interface graphique d’AmI-DEU adopte la métaphore du flux avec des aides visuelles pour simplifier le développement d'applications en permettant des définitions de règles étape par étape. Dans le cadre de l’expérimentation, AmI-DEU comprend un banc d’essai pour le développement d’applications IdO. Les résultats expérimentaux montrent une optimisation sémantique potentielle des ressources pour les applications IoT dynamiques dans les maisons intelligentes et les villes intelligentes. Notre approche favorise l'adoption de la technologie pour améliorer le bienêtre et la qualité de vie des personnes. Cette thèse se termine par des orientations de recherche que le cadriciel AmI-DEU dévoile pour réaliser des environnements intelligents omniprésents fournissant des adaptations appropriées pour soutenir les intentions des personnes.Abstract: This thesis aims at expanding the use of the Internet of Things (IoT) by facilitating the development of applications by people who are not experts in software development. The thesis proposes a new approach to augment IoT applications’ semantics and domain expert involvement in context-aware application development. Our approach enables us to manage the changing environment context and generate applications that run in multiple smart environments to provide required actions in diverse settings. Our approach is implemented in a framework (AmI-DEU) that includes the components for IoT application development. AmI- DEU integrates environment services, promotes end-user interaction, and provides the means to represent the application domain, end-user profile, and end-user intentions. The framework enables the definition of IoT applications with a self-described activity intention that contains the required knowledge to achieve the activity. Then, the framework generates Intention as a Context (IaaC), which includes a self-described activity intention with compiled knowledge to be assessed for augmented adaptations in smart environments. AmI-DEU framework semantics adopts ContextAA (Context-Aware Agents) – a platform to provide context-awareness in multiple environments. The framework performs a knowledge compilation by rules and semantic matching to produce autonomic IoT applications to run in ContextAA. AmI-DEU also includes a visual tool for quick application development and deployment to ContextAA. The AmI-DEU GUI adopts the flow metaphor with visual aids to simplify developing applications by allowing step-by-step rule definitions. As part of the experimentation, AmI-DEU includes a testbed for IoT application development. Experimental results show a potential semantic optimization for dynamic IoT applications in smart homes and smart cities. Our approach promotes technology adoption to improve people’s well-being and quality of life. This thesis concludes with research directions that the AmI-DEU framework uncovers to achieve pervasive smart environments providing suitable adaptations to support people’s intentions

    Lightweight information integration through partial mapping and query reformulation

    Get PDF
    [no abstract

    A Reference Architecture for Service Lifecycle Management – Construction and Application to Designing and Analyzing IT Support

    Get PDF
    Service-orientation and the underlying concept of service-oriented architectures are a means to successfully address the need for flexibility and interoperability of software applications, which in turn leads to improved IT support of business processes. With a growing level of diffusion, sophistication and maturity, the number of services and interdependencies is gradually rising. This increasingly requires companies to implement a systematic management of services along their entire lifecycle. Service lifecycle management (SLM), i.e., the management of services from the initiating idea to their disposal, is becoming a crucial success factor. Not surprisingly, the academic and practice communities increasingly postulate comprehensive IT support for SLM to counteract the inherent complexity. The topic is still in its infancy, with no comprehensive models available that help evaluating and designing IT support in SLM. This thesis presents a reference architecture for SLM and applies it to the evaluation and designing of SLM IT support in companies. The artifact, which largely resulted from consortium research efforts, draws from an extensive analysis of existing SLM applications, case studies, focus group discussions, bilateral interviews and existing literature. Formal procedure models and a configuration terminology allow adapting and applying the reference architecture to a company’s individual setting. Corresponding usage examples prove its applicability and demonstrate the arising benefits within various SLM IT support design and evaluation tasks. A statistical analysis of the knowledge embodied within the reference data leads to novel, highly significant findings. For example, contemporary standard applications do not yet emphasize the lifecycle concept but rather tend to focus on small parts of the lifecycle, especially on service operation. This forces user companies either into a best-of-breed or a custom-development strategy if they are to implement integrated IT support for their SLM activities. SLM software vendors and internal software development units need to undergo a paradigm shift in order to better reflect the numerous interdependencies and increasing intertwining within services’ lifecycles. The SLM architecture is a first step towards achieving this goal.:Content Overview List of Figures....................................................................................... xi List of Tables ...................................................................................... xiv List of Abbreviations.......................................................................xviii 1 Introduction .................................................................................... 1 2 Foundations ................................................................................... 13 3 Architecture Structure and Strategy Layer .............................. 57 4 Process Layer ................................................................................ 75 5 Information Systems Layer ....................................................... 103 6 Architecture Application and Extension ................................. 137 7 Results, Evaluation and Outlook .............................................. 195 Appendix ..........................................................................................203 References .......................................................................................... 463 Curriculum Vitae.............................................................................. 498 Bibliographic Data............................................................................ 49

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Automated Bidding in Computing Service Markets. Strategies, Architectures, Protocols

    Get PDF
    This dissertation contributes to the research on Computational Mechanism Design by providing novel theoretical and software models - a novel bidding strategy called Q-Strategy, which automates bidding processes in imperfect information markets, a software framework for realizing agents and bidding strategies called BidGenerator and a communication protocol called MX/CS, for expressing and exchanging economic and technical information in a market-based scheduling system

    Algorithms for Geometric Optimization and Enrichment in Industrialized Building Construction

    Get PDF
    The burgeoning use of industrialized building construction, coupled with advances in digital technologies, is unlocking new opportunities to improve the status quo of construction projects being over-budget, delayed and having undesirable quality. Yet there are still several objective barriers that need to be overcome in order to fully realize the full potential of these innovations. Analysis of literature and examples from industry reveal the following notable barriers: (1) geometric optimization methods need to be developed for the stricter dimensional requirements in industrialized construction, (2) methods are needed to preserve model semantics during the process of generating an updated as-built model, (3) semantic enrichment methods are required for the end-of-life stage of industrialized buildings, and (4) there is a need to develop pragmatic approaches for algorithms to ensure they achieve required computational efficiency. The common thread across these examples is the need for developing algorithms to optimize and enrich geometric models. To date, a comprehensive approach paired with pragmatic solutions remains elusive. This research fills this gap by presenting a new approach for algorithm development along with pragmatic implementations for the industrialized building construction sector. Computational algorithms are effective for driving the design, analysis, and optimization of geometric models. As such, this thesis develops new computational algorithms for design, fabrication and assembly, onsite construction, and end-of-life stages of industrialized buildings. A common theme throughout this work is the development and comparison of varied algorithmic approaches (i.e., exact vs. approximate solutions) to see which is optimal for a given process. This is implemented in the following ways. First, a probabilistic method is used to simulate the accumulation of dimensional tolerances in order to optimize geometric models during design. Second, a series of exact and approximate algorithms are used to optimize the topology of 2D panelized assemblies to minimize material use during fabrication and assembly. Third, a new approach to automatically update geometric models is developed whereby initial model semantics are preserved during the process of generating an as-built model. Finally, a series of algorithms are developed to semantically enrich geometric models to enable industrialized buildings to be disassembled and reused. The developments made in this research form a rational and pragmatic approach to addressing the existing challenges faced in industrialized building construction. Such developments are shown not only to be effective in improving the status quo in the industry (i.e., improving cost, reducing project duration, and improving quality), but also for facilitating continuous innovation in construction. By way of assessing the potential impact of this work, the proposed algorithms can reduce rework risk during fabrication and assembly (65% rework reduction in the case study for the new tolerance simulation algorithm), reduce waste during manufacturing (11% waste reduction in the case study for the new panel unfolding and nesting algorithms), improve accuracy and automation of as-built model generation (model error reduction from 50.4 mm to 5.7 mm in the case study for the new parametric BIM updating algorithms), reduce lifecycle cost for adapting industrialized buildings (15% reduction in capital costs in the computational building configurator) and reducing lifecycle impacts for reusing structural systems from industrialized buildings (between 54% to 95% reduction in average lifecycle impacts for the approach illustrated in Appendix B). From a computational standpoint, the novelty of the algorithms developed in this research can be described as follows. Complex geometric processes can be codified solely on the innate properties of geometry – that is, by parameterizing geometry and using methods such as combinatorial optimization, topology can be optimized and semantics can be automatically enriched for building assemblies. Employing the use of functional discretization (whereby continuous variable domains are converted into discrete variable domains) is shown to be highly effective for complex geometric optimization approaches. Finally, the algorithms encapsulate and balance the benefits posed by both parametric and non-parametric schemas, resulting in the ability to achieve both high representational accuracy and semantically rich information (which has previously not been achieved or demonstrated). In summary, this thesis makes several key improvements to industrialized building construction. One of the key findings is that rather than pre-emptively determining the best suited algorithm for a given process or problem, it is often more pragmatic to derive both an exact and approximate solution and then decide which is optimal to use for a given process. Generally, most tasks related to optimizing or enriching geometric models is best solved using approximate methods. To this end, this research presents a series of key techniques that can be followed to improve the temporal performance of algorithms. The new approach for developing computational algorithms and the pragmatic demonstrations for geometric optimization and enrichment are expected to bring the industry forward and solve many of the current barriers it faces

    Achieving Sustainability Through Geodata: An Empirical Study of Challenges and Barriers

    Get PDF
    Master's thesis in Information systems (IS501)Research within data management is often based on the elements of the data lifecycle. Organizations and businesses are also becoming more interested in data lifecycle management to leverage their data streams, compounded by an interest in geographical attributes within the data –referred to as geodata. Geodata provides a richer basis for analysis and is increasingly important within urban planning. Furthermore, the pressure to achieve sustainability goals calls for improving the data lifecycle. The challenge remainsas to what can be improvedwithin the data lifecycle –with geodata as an important input –to achieve sustainability dimensions. Our main contribution through this study is shedding light on challenges withgeodata from an Information Systems (IS) and sustainability perspective. Additionally, the identified challenges are also feedback to data management research and the data lifecycle
    • …
    corecore