2,358 research outputs found

    Fuzzy metrics and fuzzy logic for colour image filtering

    Full text link
    El filtrado de imagen es una tarea fundamental para la mayoría de los sistemas de visión por computador cuando las imágenes se usan para análisis automático o, incluso, para inspección humana. De hecho, la presencia de ruido en una imagen puede ser un grave impedimento para las sucesivas tareas de procesamiento de imagen como, por ejemplo, la detección de bordes o el reconocimiento de patrones u objetos y, por lo tanto, el ruido debe ser reducido. En los últimos años el interés por utilizar imágenes en color se ha visto incrementado de forma significativa en una gran variedad de aplicaciones. Es por esto que el filtrado de imagen en color se ha convertido en un área de investigación interesante. Se ha observado ampliamente que las imágenes en color deben ser procesadas teniendo en cuenta la correlación existente entre los distintos canales de color de la imagen. En este sentido, la solución probablemente más conocida y estudiada es el enfoque vectorial. Las primeras soluciones de filtrado vectorial, como por ejemplo el filtro de mediana vectorial (VMF) o el filtro direccional vectorial (VDF), se basan en la teoría de la estadística robusta y, en consecuencia, son capaces de realizar un filtrado robusto. Desafortunadamente, estas técnicas no se adaptan a las características locales de la imagen, lo que implica que usualmente los bordes y detalles de las imágenes se emborronan y pierden calidad. A fin de solventar este problema, varios filtros vectoriales adaptativos se han propuesto recientemente. En la presente Tesis doctoral se han llevado a cabo dos tareas principales: (i) el estudio de la aplicabilidad de métricas difusas en tareas de procesamiento de imagen y (ii) el diseño de nuevos filtros para imagen en color que sacan provecho de las propiedades de las métricas difusas y la lógica difusa. Los resultados experimentales presentados en esta Tesis muestran que las métricas difusas y la lógica difusa son herramientas útiles para diseñar técnicas de filtrado,Morillas Gómez, S. (2007). Fuzzy metrics and fuzzy logic for colour image filtering [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1879Palanci

    Some novel digital image filters for suppression of impulsive noise

    Get PDF
    In digital imaging, quality of image degrades due to contamination of various types of noise during the process of acquisition, transmission and storage. Especially impulse noise appears during image acquisition and transmission, which severely degrades the image quality and cause a great loss of information details in an image. Various filtering technique are found in literature for removal of impulse noise. Nonlinear filter such as standard median, weight median filter, center weight median and switching based median filter out perform the linear filters. This thesis investigates the performance analysis of different nonlinear filtering schemes. The performance of these filters can be improved by incorporating the mechanism of noise detection and then applying switching based adaptive filtering approach. Three novel filtering approaches that incorporate the above principles are proposed. It is found that all three approaches give noticeable performance improvement of over many filters reported in literature

    Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising

    Get PDF
    Magnetic resonance imaging (MRI) is extensively exploited for more accuratepathological changes as well as diagnosis. Conversely, MRI suffers from variousshortcomings such as ambient noise from the environment, acquisition noise from theequipment, the presence of background tissue, breathing motion, body fat, etc.Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation basedintersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters.This filter requires an adjustment of the ICI parameters for efficient window size selection.From the wide range of ICI parametric values, finding out the best set of tunes values is itselfan optimization problem. The present study proposed a novel technique for parameteroptimization of LPA-ICI filter using genetic algorithm (GA) for brain MR imagesde-noising. The experimental results proved that the proposed method outperforms theLPA-ICI method for de-noising in terms of various performance metrics for different noisevariance levels. Obtained results reports that the ICI parameter values depend on the noisevariance and the concerned under test image

    Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise

    Get PDF
    Impulse noise is a most common noise which affects the image quality during acquisition or transmission, reception or storage and retrieval process. Impulse noise comes under two categories: (1) fixed-valued impulse noise, also known as salt-and-pepper noise (SPN) due to its appearance, where the noise value may be either the minimum or maximum value of the dynamic gray-scale range of image and (2) random-valued impulse noise (RVIN), where the noisy pixel value is bounded by the range of the dynamic gray-scale of the image. In literature, many efficient filters are proposed to suppress the impulse noise. But their performance is not good under moderate and high noise conditions. Hence, there is sufficient scope to explore and develop efficient filters for suppressing the impulse noise at high noise densities. In the present research work, efforts are made to propose efficient filters that suppress the impulse noise and preserve the edges and fine details of an image in wide range of noise densities. It is clear from the literature that detection followed by filtering achieves better performance than filtering without detection. Hence, the proposed filters in this thesis are based on detection followed by filtering techniques. The filters which are proposed to suppress the SPN in this thesis are: Adaptive Noise Detection and Suppression (ANDS) Filter Robust Estimator based Impulse-Noise Reduction (REIR) Algorithm Impulse Denoising Using Improved Progressive Switching Median Filter (IDPSM) Impulse-Noise Removal by Impulse Classification (IRIC) A Novel Adaptive Switching Filter-I (ASF-I) for Suppression of High Density SPN A Novel Adaptive Switching Filter-II (ASF-II) for Suppression of High Density SPN Impulse Denoising Using Iterative Adaptive Switching Filter (IASF) In the first method, ANDS, neighborhood difference is employed for pixel classification. Controlled by binary image, the noise is filtered by estimating the value of a pixel with an adaptive switching based median filter applied exclusively to neighborhood pixels that are labeled noise-free. The proposed filter performs better in retaining edges and fine details of an image at low-to-medium densities of fixed-valued impulse noise.The REIR method is based on robust statistic technique, where adaptive window is used for pixel classification. The noisy pixel is replaced with Lorentzian estimator or average of the previously processed pixels. Because of adaptive windowing technique, the filter is able to suppress the noise at a density as high as 90%. In the proposed method, IDPSM, the noisy pixel is replaced with median of uncorrupted pixels in an adaptive filtering window. The iterative nature of the filter makes it more efficient in noise detection and adaptive filtering window technique makes it robust enough to preserve edges and fine details of an image in wide range of noise densities. The forth proposed method is IRIC. The noisy pixel is replaced with median of processed pixels in the filtering window. At high noise densities, the median filtering may not be able to reject outliers always. Under such circumstances, the processed left neighboring pixel is considered as the estimated output. The computational complexity of this method is equivalent to that of a median filter having a 3×3 window. The proposed algorithm requires simple physical realization structures. Therefore, this algorithm may be quite useful for online and real-time applications. Two different adaptive switching filters: ASF-I and ASF-II are developed for suppressing SPN at high noise density. The noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Depending on noise estimation, a small filtering window size is initially selected and then the scheme adaptively changes the window size based on the number of noise-free pixels. Therefore, the proposed method removes the noise much more effectively even at noise density as high as 90% and yields high image quality. In the proposed method IASF, noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Due to its iterative structure, the performance of this filter is better than existing order-statistic filters. Further, the adaptive filtering window makes it robust enough to preserve the edges and fine details of an image. Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise x The filters which are proposed for suppressing random-valued impulse noise (RVIN) are: Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm The proposed method, Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm is a modified MAD (Median of the Absolute Deviations from the median) scheme alongwith a threshold employed for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in adaptive filtering window. Another proposed method for denoising the random-valued and fixed-valued impulse noise is ALT-MAD. A modified MAD based algorithm alongwith a local adaptive threshold is utilized for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in the filtering window of adaptively varied size. Three threshold functions are suggested and employed in this algorithm. Thus, three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are developed. They are observed to be quite efficient in noise detection and filtering. In the last part of the thesis, some efforts are made to develop filters for color image denoising. The filters which perform better in denoising gray-scale images are developed for suppression of impulsive noise from color images. Since the performance of denoising filters degrades in other color spaces, efforts are made to develop color image denoising filters in RGB color space only in this research work. The developed filters are: Multi-Channel Robust Estimator based Impulse-Noise Reduction (MC-REIR) Algorithm Multi-Channel Impulse-Noise Removal by Impulse Classification (MC-IRIC) Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) Algorithm It is observed from the simulation results that the proposed filters perform better than the existing methods. The proposed methods: ASF-1 and IASF exhibit quite superior performance in suppressing SPN in high noise densities compared to other methods. Similarly ALT-MAD-3 exhibits much better performance in suppressing RVIN of low to medium noise densities.The REIR method is based on robust statistic technique, where adaptive window is used for pixel classification. The noisy pixel is replaced with Lorentzian estimator or average of the previously processed pixels. Because of adaptive windowing technique, the filter is able to suppress the noise at a density as high as 90%. In the proposed method, IDPSM, the noisy pixel is replaced with median of uncorrupted pixels in an adaptive filtering window. The iterative nature of the filter makes it more efficient in noise detection and adaptive filtering window technique makes it robust enough to preserve edges and fine details of an image in wide range of noise densities. The forth proposed method is IRIC. The noisy pixel is replaced with median of processed pixels in the filtering window. At high noise densities, the median filtering may not be able to reject outliers always. Under such circumstances, the processed left neighboring pixel is considered as the estimated output. The computational complexity of this method is equivalent to that of a median filter having a 3×3 window. The proposed algorithm requires simple physical realization structures. Therefore, this algorithm may be quite useful for online and real-time applications. Two different adaptive switching filters: ASF-I and ASF-II are developed for suppressing SPN at high noise density. The noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Depending on noise estimation, a small filtering window size is initially selected and then the scheme adaptively changes the window size based on the number of noise-free pixels. Therefore, the proposed method removes the noise much more effectively even at noise density as high as 90% and yields high image quality. In the proposed method IASF, noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Due to its iterative structure, the performance of this filter is better than existing order-statistic filters. Further, the adaptive filtering window makes it robust enough to preserve the edges and fine details of an image. Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise x The filters which are proposed for suppressing random-valued impulse noise (RVIN) are: Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm The proposed method, Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm is a modified MAD (Median of the Absolute Deviations from the median) scheme alongwith a threshold employed for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in adaptive filtering window. Another proposed method for denoising the random-valued and fixed-valued impulse noise is ALT-MAD. A modified MAD based algorithm alongwith a local adaptive threshold is utilized for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in the filtering window of adaptively varied size. Three threshold functions are suggested and employed in this algorithm. Thus, three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are developed. They are observed to be quite efficient in noise detection and filtering. In the last part of the thesis, some efforts are made to develop filters for color image denoising. The filters which perform better in denoising gray-scale images are developed for suppression of impulsive noise from color images. Since the performance of denoising filters degrades in other color spaces, efforts are made to develop color image denoising filters in RGB color space only in this research work. The developed filters are: Multi-Channel Robust Estimator based Impulse-Noise Reduction (MC-REIR) Algorithm Multi-Channel Impulse-Noise Removal by Impulse Classification (MC-IRIC) Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) Algorithm It is observed from the simulation results that the proposed filters perform better than the existing methods. The proposed methods: ASF-1 and IASF exhibit quite superior performance in suppressing SPN in high noise densities compared to other methods. Similarly ALT-MAD-3 exhibits much better performance in suppressing RVIN of low to medium noise densities.The REIR method is based on robust statistic technique, where adaptive window is used for pixel classification. The noisy pixel is replaced with Lorentzian estimator or average of the previously processed pixels. Because of adaptive windowing technique, the filter is able to suppress the noise at a density as high as 90%. In the proposed method, IDPSM, the noisy pixel is replaced with median of uncorrupted pixels in an adaptive filtering window. The iterative nature of the filter makes it more efficient in noise detection and adaptive filtering window technique makes it robust enough to preserve edges and fine details of an image in wide range of noise densities. The forth proposed method is IRIC. The noisy pixel is replaced with median of processed pixels in the filtering window. At high noise densities, the median filtering may not be able to reject outliers always. Under such circumstances, the processed left neighboring pixel is considered as the estimated output. The computational complexity of this method is equivalent to that of a median filter having a 3×3 window. The proposed algorithm requires simple physical realization structures. Therefore, this algorithm may be quite useful for online and real-time applications. Two different adaptive switching filters: ASF-I and ASF-II are developed for suppressing SPN at high noise density. The noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Depending on noise estimation, a small filtering window size is initially selected and then the scheme adaptively changes the window size based on the number of noise-free pixels. Therefore, the proposed method removes the noise much more effectively even at noise density as high as 90% and yields high image quality. In the proposed method IASF, noisy pixel is replaced with alpha-trimmed mean value of uncorrupted pixels in the adaptive filtering window. Due to its iterative structure, the performance of this filter is better than existing order-statistic filters. Further, the adaptive filtering window makes it robust enough to preserve the edges and fine details of an image. Novel Restoration Techniques for Images Corrupted with High Density Impulsive Noise x The filters which are proposed for suppressing random-valued impulse noise (RVIN) are: Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm Adaptive Local Thresholding with MAD (ALT-MAD) Algorithm The proposed method, Adaptive Window based Pixel-Wise MAD (AW-PWMAD) Algorithm is a modified MAD (Median of the Absolute Deviations from the median) scheme alongwith a threshold employed for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in adaptive filtering window. Another proposed method for denoising the random-valued and fixed-valued impulse noise is ALT-MAD. A modified MAD based algorithm alongwith a local adaptive threshold is utilized for pixel-classification. The noisy pixel is replaced with median of uncorrupted pixels in the filtering window of adaptively varied size. Three threshold functions are suggested and employed in this algorithm. Thus, three different versions, namely, ALT-MAD-1, ALT-MAD-2 and ALT-MAD-3 are developed. They are observed to be quite efficient in noise detection and filtering. In the last part of the thesis, some efforts are made to develop filters for color image denoising. The filters which perform better in denoising gray-scale images are developed for suppression of impulsive noise from color images. Since the performance of denoising filters degrades in other color spaces, efforts are made to develop color image denoising filters in RGB color space only in this research work. The developed filters are: Multi-Channel Robust Estimator based Impulse-Noise Reduction (MC-REIR) Algorithm Multi-Channel Impulse-Noise Removal by Impulse Classification (MC-IRIC) Multi-Channel Iterative Adaptive Switching Filter (MC-IASF) Multi-Channel Adaptive Local Thresholding with MAD (MC-ALT-MAD) Algorithm It is observed from the simulation results that the proposed filters perform better than the existing methods. The proposed methods: ASF-1 and IASF exhibit quite superior performance in suppressing SPN in high noise densities compared to other methods. Similarly ALT-MAD-3 exhibits much better performance in suppressing RVIN of low to medium noise densities

    An Impulse Detection Methodology and System with Emphasis on Weapon Fire Detection

    Get PDF
    This dissertation proposes a methodology for detecting impulse signatures. An algorithm with specific emphasis on weapon fire detection is proposed. Multiple systems in which the detection algorithm can operate, are proposed. In order for detection systems to be used in practical application, they must have high detection performance, minimizing false alarms, be cost effective, and utilize available hardware. Most applications require real time processing and increased range performance, and some applications require detection from mobile platforms. This dissertation intends to provide a methodology for impulse detection, demonstrated for the specific application case of weapon fire detection, that is intended for real world application, taking into account acceptable algorithm performance, feasible system design, and practical implementation. The proposed detection algorithm is implemented with multiple sensors, allowing spectral waveband versatility in system design. The proposed algorithm is also shown to operate at a variety of video frame rates, allowing for practical design using available common, commercial off the shelf hardware. Detection, false alarm, and classification performance are provided, given the use of different sensors and associated wavebands. The false alarms are further mitigated through use of an adaptive, multi-layer classification scheme, leading to potential on-the-move application. The algorithm is shown to work in real time. The proposed system, including algorithm and hardware, is provided. Additional systems are proposed which attempt to complement the strengths and alleviate the weaknesses of the hardware and algorithm. Systems are proposed to mitigate saturation clutter signals and increase detection of saturated targets through the use of position, navigation, and timing sensors, acoustic sensors, and imaging sensors. Furthermore, systems are provided which increase target detection and provide increased functionality, improving the cost effectiveness of the system. The resulting algorithm is shown to enable detection of weapon fire targets, while minimizing false alarms, for real-world, fieldable applications. The work presented demonstrates the complexity of detection algorithm and system design for practical applications in complex environments and also emphasizes the complex interactions and considerations when designing a practical system, where system design is the intersection of algorithm performance and design, hardware performance and design, and size, weight, power, cost, and processing
    corecore