245 research outputs found

    Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review

    Get PDF
    Exoesqueleto para incrementar la fuerza en las rodillasThere are different devices to increase the strength capacity of people with walking problems. These devices can be classified into exoskeletons, orthotics, and braces. This review aims to identify the state of the art in the design of these medical devices, based on an analysis of patents and literature. However, there are some difficulties in processing the records due to the lack of filters and standardization in the names, generating discrepancies between the search engines, among others. Concerning the patents, 74 patents were analyzed using search engines such as Google Patents, Derwent, The Lens, Patentscope, and Espacenet over the past ten years. A bibliometric analysis was performed using 63 scientific reports from Web of Science and The Lens in the same period for scientific communications. The results show a trend to use the mechanical design of exoskeletons based on articulated rigid structures and elements that provide force to move the structure. These are generally two types: (a) elastic elements and (b) electromechanical elements. The United States accounts for 32% of the technological patents reviewed. The results suggest that the use of exoskeletons or orthoses customized to the users’ needs will continue to increase over the years due to the worldwide growth in disability, particularly related to mobility difficulties and technologies related to the combined use of springs and actuators

    Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: A preliminary report

    Get PDF
    open7noopenSale, Patrizio; Russo, Emanuele Francesco; Russo, Michele; Masiero, Stefano; Piccione, Francesco; Calabrò, Rocco Salvatore; Filoni, SerenaSale, Patrizio; Russo, Emanuele Francesco; Russo, Michele; Masiero, Stefano; Piccione, Francesco; Calabrò, Rocco Salvatore; Filoni, Seren

    Design of a Knee Exoskeleton actuated with Artificial Muscles of SMA

    Get PDF
    This project presents the preliminary design of a powered exoskeleton for the knee joint, build upon the structural framework of DonJoy’s X-Act Rom Lite - Knee Brace. The device allows exclusively one degree of freedom, intended for the flexion and extension of the lower limb. The actuation mechanism is based on artificial muscles of Nitinol fibers, which are a type of Shape Memory Alloys (SMA). These wires contract 4% of its original length as the temperature rises due to the Joule Effect, when connected to a power supply. Thanks to this phenomenon, the proposed robotic orthosis presents portability, lightness and noiseless performance, in comparison to similar products. The main role of these instruments is to conduct medical rehabilitation therapy for those patients who have suffered from neurological diseases, musculoskeletal lesions or spinal cord injuries. Consequently, the wearer might recover -partially or fully- the movement on the joint. The results from several trials were obtained after mimicking real rehabilitation positions -like sitting, standing or lying down- and are analyzed thoroughly in this thesis. All in all, this prototype proves how the SMA actuators are a viable alternative to create lower extremity robotic devices for rehabilitation.Ingeniería Biomédic

    Design, implementation and control of rehabilitation robots for upper and lower limbs

    Get PDF
    We present two novel rehabilitation robots for stroke patients. For lower limb stroke rehabilitation, we present a novel self-aligning exoskeleton for the knee joint. The primal novelty of the design originates from its kinematic structure that allows translational movements of the knee joint on the sagittal plane along with the knee rotation. Automatically adjusting its joint axes, the exoskeleton enables a perfect match between human joint axes and the device axes. Thanks to this feature, the knee exoskeleton is not only capable of guaranteeing ergonomy and comfort throughout the therapy, but also extends the usable range of motion for the knee joint. Moreover, this adjustability feature significantly shortens the setup time required to attach the patient to the robot, allowing more effective time be spend on exercises instead of wasting it for adjustments. We have implemented an impedance-type concept of the knee exoskeleton, experimentally characterized its closed-loop performance and demonstrated ergonomy and useability of this device through human subject experiments. To administer table top exercises during upper limb stroke rehabilitation, we present a novel Mecanum-wheeled holonomic mobile rehabilitation robot for home therapy. The device can move/rotate independently on its unlimited planar workspace to provide assistance to patients. We have implemented two different concepts of holonomic mobile platform based on different actuation and sensing principles: an admittance-type mobile robot and a mobile platform with series elastic actuation. The admittance-type robot is integrated with virtual reality simulations and can assist patients through virtual tunnels designed around nominal task trajectories. The holonomic platform with series elastic actuation eliminates the need for costly force sensors and enables implementation of closed loop force control with higher controller gains, providing robustness against imperfections in the power transmission and allowing lower cost drive components to be utilized. For contour following tasks with the holonomic platforms, we have synthesized passive velocity field controllers (PVFC) that ensure coordination and synchronization between various degrees of freedom of the patient arm, while letting patients to complete the task at their own preferred pace. PVFC not only minimizes the contour error but also ensures coupled stability of the human-in-the-loop system

    Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury : a framework towards the standardisation of clinical evaluations

    Get PDF
    Robotic lower-limb exoskeletons have the potential to provide additional clinical benefits for persons with spinal cord injury (SCI). However, high variability between protocols does not allow the comparison of study results on safety and feasibility between different exoskeletons. We therefore incorporated key aspects from previous studies into our study protocol and accordingly conducted a multicentre study investigating the safety, feasibility and usability of the ABLE Exoskeleton in clinical settings. In this prospective pretest-posttest quasi-experimental study across two SCI centres in Germany and Spain, in- and outpatients with SCI were recruited into a 12-session training and assessment protocol, utilising the ABLE Exoskeleton. A follow-up visit after 4 weeks was included to assess after-training outcomes. Safety outcomes (device-related adverse events (AEs), number of drop-outs), feasibility and usability measures (level of assistance, donning/doffing-time) were recorded at every session together with changes in gait parameters and function. Patient-reported outcome measures including the rate of perceived exertion (RPE) and the psychosocial impact of the device were performed. Satisfaction with the device was evaluated in both participants and therapists. All 24 participants (45 ± 12 years), with mainly subacute SCI (< 1 year after injury) from C5 to L3, (ASIA Impairment Scale A to D) completed the follow-up. In 242 training sessions, 8 device-related AEs (pain and skin lesions) were reported. Total time for don and doff was 6:50 ± 2:50 min. Improvements in level of assistance and gait parameters (time, steps, distance and speed, p < 0.05) were observed in all participants. Walking function and RPE improved in participants able to complete walking tests with (n = 9) and without (n = 6) the device at study start (p < 0.05). A positive psychosocial impact of the exoskeleton was reported and the satisfaction with the device was good, with best ratings in safety (participants), weight (therapists), durability and dimensions (both). Our study results prove the feasibility of safe gait training with the ABLE Exoskeleton in hospital settings for persons with SCI, with improved clinical outcomes after training. Our study protocol allowed for consistent comparison of the results with other exoskeleton trials and can serve as a future framework towards the standardisation of early clinical evaluations. Trial Registration , DRKS00023503, retrospectively registered on November 18, 2020. The online version contains supplementary material available at 10.1186/s12984-023-01165-0

    Self-adjustment mechanisms and their application for orthosis design

    Get PDF
    Medical orthoses aim at guiding anatomical joints along their natural trajectories while preventing pathological movements, especially in case of trauma or injuries. The motions that take place between bone surfaces have complex kinematics. These so-called arthrokinematic motions exhibit axes that move both in translation and rotation. Traditionally, orthoses are carefully adjusted and positioned such that their kinematics approximate the arthrokinematic movements as closely as possible in order to protect the joint. Adjustment procedures are typically long and tedious. We suggest in this paper another approach. We propose mechanisms having intrinsic self-aligning properties. They are designed such that their main axis self-adjusts with respect to the joint’s physiological axis during motion. When connected to a limb, their movement becomes homokinetic and they have the property of automatically minimizing internal stresses. The study is performed here in the planar case focusing on the most important component of the arthrokinematic motions of a knee joint

    Design, control, and pilot study of a lightweight and modular robotic exoskeleton for walking assistance after spinal cord injury

    Get PDF
    Walking rehabilitation using exoskeletons is of high importance to maximize independence and improve the general well-being of spinal cord injured subjects. We present the design and control of a lightweight and modular robotic exoskeleton to assist walking in spinal cord injured subjects who can control hip flexion, but lack control of knee and ankle muscles. The developed prototype consists of two robotic orthoses, which are powered by a motor-harmonic drive actuation system that controls knee flexion–extension. This actuation module is assembled on standard passive orthoses. Regarding the control, the stance-to-swing transition is detected using two inertial measurement units mounted on the tibial supports, and then the corresponding motor performs a predefined flexion–extension cycle that is personalized to the specific patient’s motor function. The system is portable by means of a backpack that contains an embedded computer board, the motor drivers, and the battery. A preliminary biomechanical evaluation of the gait-assistive device used by a female patient with incomplete spinal cord injury at T11 is presented. Results show an increase of gait speed (+24.11%), stride length (+7.41%), and cadence (+15.56%) when wearing the robotic orthoses compared with the case with passive orthoses. Conversely, a decrease of lateral displacement of the center of mass (-19.31%) and step width (-13.37% right step, -8.81% left step) are also observed, indicating gain of balance. The biomechanical assessment also reports an overall increase of gait symmetry when wearing the developed assistive device.Peer ReviewedPostprint (published version

    Feasibility of Rehabilitation Training With a Newly Developed Wearable Robot for Patients With Limited Mobility

    Get PDF
    ObjectiveTo investigate the feasibility of rehabilitation training with a new wearable robot.DesignBefore-after clinical intervention.SettingUniversity hospital and private rehabilitation facilities.ParticipantsA convenience sample of patients (N=38) with limited mobility. The underlying diseases were stroke (n=12), spinal cord injuries (n=8), musculoskeletal diseases (n=4), and other diseases (n=14).InterventionsThe patients received 90-minute training with a wearable robot twice per week for 8 weeks (16 sessions).Main Outcome MeasuresFunctional ambulation was assessed with the 10-m walk test (10MWT) and the Timed Up & Go (TUG) test, and balance ability was assessed with the Berg Balance Scale (BBS). Both assessments were performed at baseline and after rehabilitation.ResultsThirty-two patients completed 16 sessions of training with the wearable robot. The results of the 10MWT included significant improvements in gait speed, number of steps, and cadence. Although improvements were observed, as measured with the TUG test and BBS, the results were not statistically significant. No serious adverse events were observed during the training.ConclusionsEight weeks of rehabilitative training with the wearable robot (16 sessions of 90min) could be performed safely and effectively, even many years after the subjects received their diagnosis
    corecore