854 research outputs found

    Multipopulation-based multi-level parallel enhanced Jaya algorithms

    Get PDF
    To solve optimization problems, in the field of engineering optimization, an optimal value of a specific function must be found, in a limited time, within a constrained or unconstrained domain. Metaheuristic methods are useful for a wide range of scientific and engineering applications, which accelerate being able to achieve optimal or near-optimal solutions. The metaheuristic method called Jaya has generated growing interest because of its simplicity and efficiency. We present Jaya-based parallel algorithms to efficiently exploit cluster computing platforms (heterogeneous memory platforms). We propose a multi-level parallel algorithm, in which, to exploit distributed-memory architectures (or multiprocessors), the outermost layer of the Jaya algorithm is parallelized. Moreover, in internal layers, we exploit shared-memory architectures (or multicores) by adding two more levels of parallelization. This two-level internal parallel algorithm is based on both a multipopulation structure and an improved heuristic search path relative to the search path of the sequential algorithm. The multi-level parallel algorithm obtains average efficiency values of 84% using up to 120 and 135 processes, and slightly accelerates the convergence with respect to the sequential Jaya algorithm.This research was supported by the Spanish Ministry of Economy and Competitiveness under Grant TIN2015-66972-C5-4-R and Grant TIN2017-89266-R, co-financed by FEDER funds (MINECO/FEDER/UE)

    A novel design approach for 5G massive MIMO and NB-IoT green networks using a hybrid Jaya-differential evolution algorithm

    Get PDF
    Our main objective is to reduce power consumption by responding to the instantaneous bit rate demand by the user for 4th Generation (4G) and 5th Generation (5G) Massive MIMO network configurations. Moreover, we present and address the problem of designing green LTE networks with the Internet of Things (IoT) nodes. We consider the new NarrowBand-IoT (NB-IoT) wireless technology that will emerge in current and future access networks. In this context, we apply emerging evolutionary algorithms in the context of green network design. We investigate three different cases to show the performance of the new proposed algorithm, namely the 4G, 5G Massive MIMO, and the NB-IoT technologies. More specifically, we investigate the Teaching-Learning-Optimization (TLBO), the Jaya algorithm, the self-adaptive differential evolution jDE algorithm, and other hybrid algorithms. We introduce a new hybrid algorithm named Jaya-jDE that uses concepts from both Jaya and jDE algorithms in an effective way. The results show that 5G Massive MIMO networks require about 50% less power consumption than the 4G ones, and the NB-IoT in-band deployment requires about 10% less power than guard-band deployment. Moreover, Jaya-jDE emerges as the best algorithm based on the results

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Hybrid optimization algorithm to solve the nonconvex multiarea economic dispatch problem

    Get PDF
    In this paper, multiarea economic dispatch (MAED) problems are solved by a novel straightforward process. The solved MAED problems include transmission losses, tie-line constraints, multiple fuels, valve-point effects, and prohibited operating zones in which small, medium, and large scale test systems are involved. The methodology of tackling the problems consists in a new hybrid combination of JAYA and TLBO algorithms simultaneously to take the advantages of both to solve even nonsmooth and nonconvex MAED problems. In addition, a new and simple process is used to tackle with the interaction between areas. The objective is to economically supply demanded loads in all areas while satisfying all of the constraints. Indeed, by combining JAYA and TLBO algorithms, the convergence speed and the robustness have been improved. The computational results on small, medium, and large-scale test systems indicate the effectiveness of our proposed algorithm in terms of accuracy, robustness, and convergence speed. The obtained results of the proposed JAYA-TLBO algorithm are compared with those obtained from ten well-known algorithms. The results depict the capability of the proposed JAYA-TLBO based approach to provide a better solution.fi=vertaisarvioitu|en=peerReviewed

    A novel fuzzy adaptive teaching–learning‑based optimization (FATLBO) for solving structural optimization problems

    Get PDF
    This paper presents a new optimization algorithm called fuzzy adaptive teaching–learning-based optimization (FATLBO) for solving numerical structural problems. This new algorithm introduces three new mechanisms for increasing the searching capability of teaching–learning-based optimization namely status monitor, fuzzy adaptive teaching–learning strategies, and remedial operator. The performance of FATLBO is compared with well-known optimization methods on 26 unconstrained mathematical problems and five structural engineering design problems. Based on the obtained results, it can be concluded that FATLBO is able to deliver excellence and competitive performance in solving various structural optimization problems

    Settings-Free Hybrid Metaheuristic General Optimization Methods

    Get PDF
    Several population-based metaheuristic optimization algorithms have been proposed in the last decades, none of which are able either to outperform all existing algorithms or to solve all optimization problems according to the No Free Lunch (NFL) theorem. Many of these algorithms behave effectively, under a correct setting of the control parameter(s), when solving different engineering problems. The optimization behavior of these algorithms is boosted by applying various strategies, which include the hybridization technique and the use of chaotic maps instead of the pseudo-random number generators (PRNGs). The hybrid algorithms are suitable for a large number of engineering applications in which they behave more effectively than the thoroughbred optimization algorithms. However, they increase the difficulty of correctly setting control parameters, and sometimes they are designed to solve particular problems. This paper presents three hybridizations dubbed HYBPOP, HYBSUBPOP, and HYBIND of up to seven algorithms free of control parameters. Each hybrid proposal uses a different strategy to switch the algorithm charged with generating each new individual. These algorithms are Jaya, sine cosine algorithm (SCA), Rao’s algorithms, teaching-learning-based optimization (TLBO), and chaotic Jaya. The experimental results show that the proposed algorithms perform better than the original algorithms, which implies the optimal use of these algorithms according to the problem to be solved. One more advantage of the hybrid algorithms is that no prior process of control parameter tuning is needed.This research and APC was funded by the Spanish Ministry of Science, Innovation and Universities and the Research State Agency under Grant RTI2018-098156-B-C54 co-financed by FEDER funds, and by the Spanish Ministry of Economy and Competitiveness under Grant TIN2017-89266-R, co-financed by FEDER funds

    Set Theoretical Variants of Optimization Algorithms for System Reliability-based Design of Truss Structures

    Get PDF
    In this paper, recently developed set theoretical variants of the teaching-learning-based optimization (TLBO) algorithm and the shuffled shepherd optimization algorithm (SSOA) are employed for system reliability-based design optimization (SRBDO) of truss structures. The set theoretical variants are designed based on a simple framework in which the population of candidate solutions is divided into some number of smaller well-arranged sub-populations. In addition, the framework is applied to the Jaya algorithm, leading to a set-theoretical variant of the Jaya algorithm. So far, most of the reliability-based design optimization studies have focused on the reliability of single structural members. This is due to the fact that the optimization problems with system reliability-based constraints are computationally expensive to solve. This is especially the case of statically redundant structures, where the number of failure modes is so high that it is impractical to identify all of them. System-level reliability analysis of truss structures is carried out by the branch and bound method by which the stochastically dominant failure paths are identified within a reasonable time. At last, three numerical examples, including size optimization of truss structures, are presented to illustrate the effectiveness of the proposed SRBDO approach. The results indicate the efficiency and applicability of the set theoretical optimization algorithms to solve the SRBDO problems of truss structures
    corecore