37 research outputs found

    Models and Algorithms for Addressing Travel Time Variability: Applications from Optimal Path Finding and Traffic Equilibrium Problems

    Get PDF
    An optimal path finding problem and a traffic equilibrium problem are two important, fundamental, and interrelated topics in the transportation research field. Under travel time variability, the road networks are considered as stochastic, where the link travel times are treated as random variables with known probability density functions. By considering the effect of travel time variability and corresponding risk-taking behavior of the travelers, this dissertation proposes models and algorithms for addressing travel time variability with applications from optimal path finding and traffic equilibrium problems. Specifically, two new optimal path finding models and two novel traffic equilibrium models are proposed in stochastic networks. To adaptively determine a reliable path with the minimum travel time budget required to meet the user-specified reliability threshold α, an adaptive α-reliable path finding model is proposed. It is formulated as a chance constrained model under a dynamic programming framework. Then, a discrete-time algorithm is developed based on the properties of the proposed model. In addition to accounting for the reliability aspect of travel time variability, the α-reliable mean-excess path finding model further concerns the unreliability aspect of the late trips beyond the travel time budget. It is formulated as a stochastic mixed-integer nonlinear program. To solve this difficult problem, a practical double relaxation procedure is developed. By recognizing travelers are not only interested in saving their travel time but also in reducing their risk of being late, a α-reliable mean-excess traffic equilibrium (METE) model is proposed. Furthermore, a stochastic α-reliable mean-excess traffic equilibrium (SMETE) model is developed by incorporating the travelers’ perception error, where the travelers’ route choice decisions are determined by the perceived distribution of the stochastic travel time. Both models explicitly examine the effects of both reliability and unreliability aspects of travel time variability in a network equilibrium framework. They are both formulated as a variational inequality (VI) problem and solved by a route-based algorithm based on the modified alternating direction method. In conclusion, this study explores the effects of the various aspects (reliability and unreliability) of travel time variability on travelers’ route choice decision process by considering their risk preferences. The proposed models provide novel views of the optimal path finding problem and the traffic equilibrium problem under an uncertain environment, and the proposed solution algorithms enable potential applicability for solving practical problems

    Solving the bicriteria traffic equilibrium problem with variable demand and nonlinear path costs

    Get PDF
    a b s t r a c t In this paper, we present an algorithm for solving the bicriteria traffic equilibrium problem with variable demand and nonlinear path costs. The path cost function considered is comprised of two attributes, travel time and toll, that are combined into a nonlinear generalized cost. Travel demand is determined endogenously according to a travel disutility function. Travelers choose routes with the minimum overall generalized costs. The algorithm involves two components: a bicriteria shortest path routine to implicitly generate the set of non-dominated paths and a projection and contraction method to solve the nonlinear complementarity problem (NCP) describing the traffic equilibrium problem. Numerical experiments are conducted to demonstrate the feasibility of the algorithm to this class of traffic equilibrium problems. Published by Elsevier Inc

    A hybrid algorithm for large-scale non-separable nonlinear multicommodity flow problems

    Get PDF
    We propose an approach for large-scale non-separable nonlinear multicommodity flow problems by solving a sequence of subproblems which can be addressed by commercial solvers. Using a combination of solution methods such as modified gradient projection, shortest path algorithm and golden section search, the approach can handle general problem instances, including those with (i) non-separable cost, (ii) objective function not available analytically as polynomial but are evaluated using black-boxes, and (iii) additional side constraints not of network flow types. Implemented as a toolbox in commercial solvers, it allows researchers and practitioners, currently conversant with linear instances, to easily manage large-scale convex instances as well. In this article, we compared the proposed algorithm with alternative approaches in the literature, covering both theory and large test cases. New test cases with non-separable convex costs and non-network flow side constraints are also presented and evaluated. The toolbox is available free for academic use upon request

    Models and Solution Algorithms for Asymmetric Traffic and Transit Assignment Problems

    Get PDF
    Modeling the transportation system is important because it provides a “common ground” for discussing policy and examining the future transportation plan required in practices. Generally, modeling is a simplified representation of the real world; however, this research added value to the modeling practice by investigating the asymmetric interactions observed in the real world in order to explore potential improvements of the transportation modeling. The Asymmetric Transportation Equilibrium Problem (ATEP) is designed to precisely model actual transportation systems by considering asymmetric interactions of flows. The enhanced representation of the transportation system by the ATEP is promising because there are various asymmetric interactions in real transportation such as intersections, highway ramps, and toll roads and in the structure of the transit fares. This dissertation characterizes the ATEP with an appropriate solution algorithm and its applications. First, the research investigates the factors affecting the convergence of the ATEP. The double projection method is applied to various asymmetric types and complexities in the different sizes of networks in order to identify the influential factors including demand intensities, network configuration, route composition between modes, and sensitivity of the cost function. Secondly, the research develops an enhancement strategy for improvement in computational speed for the double projection method. The structural characteristics of the ATEP are used to develop the convergence enhancement strategy that significantly reduces the computational burdens. For the application side, instances of asymmetric interactions observed in in-vehicle crowding and the transit fare structure are modeled to provide a suggestion on policy approach for a transit agency. The direct application of the crowding model into the real network indicates that crowd modeling with multi user classes could influence the public transportation system planning and the revenue achievement of transit agencies. Moreover, addition of the disutility factor, crowding, not always causes the increase of disutility from the transit uses. The application of the non-additive fare structure in the Utah Transit Authority (UTA) network addresses the potential of the distance-based fare structure should the UTA make a transition to this fare structure from their current fare model. The analysis finds that the zero base fare has the highest potential for increasing the transit demand. However, collecting less than $0.50 with a certain buffer distance for the first boarding has potential for attracting the users to UTA\u27s transit market upon the fare structure change

    A Framework for and Empirical Study of Algorithms for Traffic Assignment

    Get PDF
    Traffic congestion is an issue in most cities worldwide. Transportation engineers and urban planners develop various tra c management projects in order to solve this issue. One way to evaluate such projects is traffic assignment (TA). The goal of TA is to predict the behaviour of road users for a given period of time (morning and evening peaks, for example). Once such a model is created, it can be used to analyse the usage of a road network and to predict the impact of implementing a potential project. The most commonly used TA model is known as user equilibrium, which is based on the assumption that all drivers minimise their travel time or generalised cost. In this study, we consider the static deterministic user equilibrium TA model. The constant growth of road networks and the need of highly precise solutions (required for select link analysis, network design, etc) motivate researchers to propose numerous methods to solve this problem. Our study aims to provide a recommendation on what methods are more suitable depending on available computational resources, time and requirements on the solution. In order to achieve this goal, we implement a flexible software framework that maximises usage of common code and, hence, ensures comparison of algorithms on common ground. In order to identify similarities and differences of the methods, we analyse groups of algorithms that are based on common principles. In addition, we implement and compare several different methods for solving sub-problems and discuss issues related to accumulated numerical errors that might occur when highly accurate solutions are required

    Estimation and stability of nonlinear control systems under intermittent information with applications to multi-agent robotics

    Get PDF
    This dissertation investigates the role of intermittent information in estimation and control problems and applies the obtained results to multi-agent tasks in robotics. First, we develop a stochastic hybrid model of mobile networks able to capture a large variety of heterogeneous multi-agent problems and phenomena. This model is applied to a case study where a heterogeneous mobile sensor network cooperatively detects and tracks mobile targets based on intermittent observations. When these observations form a satisfactory target trajectory, a mobile sensor is switched to the pursuit mode and deployed to capture the target. The cost of operating the sensors is determined from the geometric properties of the network, environment and probability of target detection. The above case study is motivated by the Marco Polo game played by children in swimming pools. Second, we develop adaptive sampling of targets positions in order to minimize energy consumption, while satisfying performance guarantees such as increased probability of detection over time, and no-escape conditions. A parsimonious predictor-corrector tracking filter, that uses geometrical properties of targets\u27 tracks to estimate their positions using imperfect and intermittent measurements, is presented. It is shown that this filter requires substantially less information and processing power than the Unscented Kalman Filter and Sampling Importance Resampling Particle Filter, while providing comparable estimation performance in the presence of intermittent information. Third, we investigate stability of nonlinear control systems under intermittent information. We replace the traditional periodic paradigm, where the up-to-date information is transmitted and control laws are executed in a periodic fashion, with the event-triggered paradigm. Building on the small gain theorem, we develop input-output triggered control algorithms yielding stable closed-loop systems. In other words, based on the currently available (but outdated) measurements of the outputs and external inputs of a plant, a mechanism triggering when to obtain new measurements and update the control inputs is provided. Depending on the noise environment, the developed algorithm yields stable, asymptotically stable, and Lp-stable (with bias) closed-loop systems. Control loops are modeled as interconnections of hybrid systems for which novel results on Lp-stability are presented. Prediction of a triggering event is achieved by employing Lp-gains over a finite horizon in the small gain theorem. By resorting to convex programming, a method to compute Lp-gains over a finite horizon is devised. Next, we investigate optimal intermittent feedback for nonlinear control systems. Using the currently available measurements from a plant, we develop a methodology that outputs when to update the control law with new measurements such that a given cost function is minimized. Our cost function captures trade-offs between the performance and energy consumption of the control system. The optimization problem is formulated as a Dynamic Programming problem, and Approximate Dynamic Programming is employed to solve it. Instead of advocating a particular approximation architecture for Approximate Dynamic Programming, we formulate properties that successful approximation architectures satisfy. In addition, we consider problems with partially observable states, and propose Particle Filtering to deal with partially observable states and intermittent feedback. Finally, we investigate a decentralized output synchronization problem of heterogeneous linear systems. We develop a self-triggered output broadcasting policy for the interconnected systems. Broadcasting time instants adapt to the current communication topology. For a fixed topology, our broadcasting policy yields global exponential output synchronization, and Lp-stable output synchronization in the presence of disturbances. Employing a converse Lyapunov theorem for impulsive systems, we provide an average dwell time condition that yields disturbance-to-state stable output synchronization in case of switching topology. Our approach is applicable to directed and unbalanced communication topologies.\u2

    Aerospace medicine and biology. A continuing bibliography with indexes, supplement 240, January 1983

    Get PDF
    Reports, articles and other documents, numbering 357, introduced into the NASA scientific and technical information system in December 1982 are given

    Aerospace Medicine and Biology: A cumulative index to the 1974 issues of a continuing bibliography

    Get PDF
    This publication is a cumulative index to the abstracts contained in supplements 125 through 136 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes three indexes--subject, personal author, and corporate source
    corecore