116 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Get PDF
    Purpose: Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.Peer Reviewe

    The three stage assembly permutation flowshop scheduling problem

    Get PDF
    [ENG] The assembly flowshop scheduling problem has been studied recently due to its applicability in real life scheduling problems. It arises when various fabrication operations are performed concurrently in one stage. It was firstly introduced by Lee et al. (1993) in a flowshop environment. Later, Potts et al. (1995) considered the two-stage assembly flowshop problem with m concurrent operations in the first stage and an assembly operation in the second stage with the makespan objective, they showed that the considered problem is NP-hard in the strong sense even when the number of machines in the first stage is equal to two. Allahverdi et al. (2007) and Al-Anzi et al. (2009) considered two bicriteria two-stage assembly flowshop scheduling problems and proposed some metaheuristics. Previously, Al- Anzi et al. (2007) had considered the two-stage assembly flowshop scheduling problem with consideration of separate setup times from processing times and tried to minimize maximum lateness as objective function. Koulamas et al. (2007) extended the two-stage assembly flowshop to three-stage assembly flowshop scheduling problem with the objective of minimizing the makespan. The first stage manufactures various fabrication operations concurrently, the second one collected and transported them into an assembly stage as final stage for an assembly operation. They analyzed the worst-case ratio bound for several heuristics for the considered problem and they also analyzed the worst-case absolute bound for a heuristic based on compact vector summation techniques. In this paper we considered the three-stage assembly flowshop problem with sequences dependent setup time (SDST) on first and third stages with the objective of minimizing total completion time. The problem is described in detail in the next section, and a mathematical model is proposed and tested in Section 3. Finally the summary of the work is presented in section 4

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    The 2-stage assembly flowshop scheduling problem with total completion time: Efficient constructive heuristic and metaheuristic

    Get PDF
    In this paper, we address the 2-stage assembly scheduling problem where there are m machines in the first stage to manufacture the components of a product and one assembly station (machine) in the second stage. The objective considered is the minimisation of the total completion time. Since the NP-hard nature of this problem is well-established, most previous research has focused on finding approximate solutions in reasonable computation time. In our paper, we first review and derive a number of problem properties and, based on these ideas, we develop a constructive heuristic that outperforms the existing constructive heuristics for the problem, providing solutions almost in real-time. Finally, for the cases where extremely high-quality solutions are required, a variable local search algorithm is proposed. The computational experience carried out shows that the algorithm outperforms the best existing metaheuristic for the problem. As a summary, the heuristics presented in the paper substantially modify the state-of-the-art of the approximate methods for the 2-stage assembly scheduling problem with total completion time objective

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented

    Cost Factor Focused Scheduling and Sequencing: A Neoteric Literature Review

    Get PDF
    The hastily emergent concern from researchers in the application of scheduling and sequencing has urged the necessity for analysis of the latest research growth to construct a new outline. This paper focuses on the literature on cost minimization as a primary aim in scheduling problems represented with less significance as a whole in the past literature reviews. The purpose of this paper is to have an intensive study to clarify the development of cost-based scheduling and sequencing (CSS) by reviewing the work published over several parameters for improving the understanding in this field. Various parameters, such as scheduling models, algorithms, industries, journals, publishers, publication year, authors, countries, constraints, objectives, uncertainties, computational time, and programming languages and optimization software packages are considered. In this research, the literature review of CSS is done for thirteen years (2010-2022). Although CSS research originated in manufacturing, it has been observed that CSS research publications also addressed case studies based on health, transportation, railway, airport, steel, textile, education, ship, petrochemical, inspection, and construction projects. A detailed evaluation of the literature is followed by significant information found in the study, literature analysis, gaps identification, constraints of work done, and opportunities in future research for the researchers and experts from the industries in CSS

    A research survey: review of flexible job shop scheduling techniques

    Get PDF
    In the last 25 years, extensive research has been carried out addressing the flexible job shop scheduling (JSS) problem. A variety of techniques ranging from exact methods to hybrid techniques have been used in this research. The paper aims at presenting the development of flexible JSS and a consolidated survey of various techniques that have been employed since 1990 for problem resolution. The paper comprises evaluation of publications and research methods used in various research papers. Finally, conclusions are drawn based on performed survey results. A total of 404 distinct publications were found addressing the FJSSP. Some of the research papers presented more than one technique/algorithm to solve the problem that is categorized into 410 different applications. Selected time period of these research papers is between 1990 and February 2014. Articles were searched mainly on major databases such as SpringerLink, Science Direct, IEEE Xplore, Scopus, EBSCO, etc. and other web sources. All databases were searched for “flexible job shop” and “scheduling” in the title an

    Artificial immune system for static and dynamic production scheduling problems

    Get PDF
    Over many decades, a large number of complex optimization problems have brought researchers' attention to consider in-depth research on optimization. Production scheduling problem is one of the optimization problems that has been the focus of researchers since the 60s. The main problem in production scheduling is to allocate the machines to perform the tasks. Job Shop Scheduling Problem (JSSP) and Flexible Job Shop Scheduling Problem (FJSSP) are two of the areas in production scheduling problems for these machines. One of the main objectives in solving JSSP and FJSSP is to obtain the best solution with minimum total completion processing time. Thus, this thesis developed algorithms for single and hybrid methods to solve JSSP and FJSSP in static and dynamic environments. In a static environment, no change is needed for the produced solution but changes to the solution are needed. On the other hand, in a dynamic environment, there are many real time events such as random arrival of jobs or machine breakdown requiring solutions. To solve these problems for static and dynamic environments, the single and hybrid methods were introduced. Single method utilizes Artificial Immune System (AIS), whereas AIS and Variable Neighbourhood Descent (VND) are used in the hybrid method. Clonal Selection Principle (CSP) algorithm in the AIS was used in the proposed single and hybrid methods. In addition, to evaluate the significance of the proposed methods, experiments and One-Way ANOVA tests were conducted. The findings showed that the hybrid method was proven to give better performance compared to single method in producing optimized solution and reduced solution generating time. The main contribution of this thesis is the development of an algorithm used in the single and hybrid methods to solve JSSP and FJSSP in static and dynamic environment
    corecore