66 research outputs found

    A self-adaptive artificial bee colony algorithm with local search for TSK-type neuro-fuzzy system training

    Full text link
    © 2019 IEEE. In this paper, we introduce a self-adaptive artificial bee colony (ABC) algorithm for learning the parameters of a Takagi-Sugeno-Kang-type (TSK-type) neuro-fuzzy system (NFS). The proposed NFS learns fuzzy rules for the premise part of the fuzzy system using an adaptive clustering method according to the input-output data at hand for establishing the network structure. All the free parameters in the NFS, including the premise and the following TSK-type consequent parameters, are optimized by the modified ABC (MABC) algorithm. Experiments involve two parts, including numerical optimization problems and dynamic system identification problems. In the first part of investigations, the proposed MABC compares to the standard ABC on mathematical optimization problems. In the remaining experiments, the performance of the proposed method is verified with other metaheuristic methods, including differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO) and standard ABC, to evaluate the effectiveness and feasibility of the system. The simulation results show that the proposed method provides better approximation results than those obtained by competitors methods

    Heuristic design of fuzzy inference systems: a review of three decades of research

    Get PDF
    This paper provides an in-depth review of the optimal design of type-1 and type-2 fuzzy inference systems (FIS) using five well known computational frameworks: genetic-fuzzy systems (GFS), neuro-fuzzy systems (NFS), hierarchical fuzzy systems (HFS), evolving fuzzy systems (EFS), and multi-objective fuzzy systems (MFS), which is in view that some of them are linked to each other. The heuristic design of GFS uses evolutionary algorithms for optimizing both Mamdani-type and Takagi–Sugeno–Kang-type fuzzy systems. Whereas, the NFS combines the FIS with neural network learning systems to improve the approximation ability. An HFS combines two or more low-dimensional fuzzy logic units in a hierarchical design to overcome the curse of dimensionality. An EFS solves the data streaming issues by evolving the system incrementally, and an MFS solves the multi-objective trade-offs like the simultaneous maximization of both interpretability and accuracy. This paper offers a synthesis of these dimensions and explores their potentials, challenges, and opportunities in FIS research. This review also examines the complex relations among these dimensions and the possibilities of combining one or more computational frameworks adding another dimension: deep fuzzy systems

    Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: a mini review

    Get PDF
    Abstract:Site suitability problems in renewable energy studies have taken a new turn since the advent of geographical information system (GIS). GIS has been used for site suitability analysis for renewable energy due to its prowess in processing and analyzing attributes with geospatial components. Multi-criteria decision making (MCDM) tools are further used for criteria ranking in the order of influence on the study. Upon location of most appropriate sites, the need for intelligent resource forecast to aid in strategic and operational planning becomes necessary if viability of the investment will be enhanced and resource variability will be better understood. One of such intelligent models is the adaptive neuro-fuzzy inference system (ANFIS) and its variants. This study presents a mini-review of GIS-based MCDM facility location problems in wind and solar resource site suitability analysis and resource forecast using ANFIS-based models. We further present a framework for the integration of the two concepts in wind and solar energy studies. Various MCDM techniques for decision making with their strengths and weaknesses were presented. Country specific studies which apply GIS-based method in site suitability were presented with criteria considered. Similarly, country-specific studies in ANFIS-based resource forecasts for wind and solar energy were also presented. From our findings, there has been no technically valid range of values for spatial criteria and the analytical hierarchical process (AHP) has been commonly used for criteria ranking leaving other techniques less explored. Also, hybrid ANFIS models are more effective compared to standalone ANFIS models in resource forecast, and ANFIS optimized with population-based models has been mostly used. Finally, we present a roadmap for integrating GIS-MCDM site suitability studies with ANFIS-based modeling for improved strategic and operational planning

    The Application of Artificial Intelligence in Project Management Research: A Review

    Get PDF
    The field of artificial intelligence is currently experiencing relentless growth, with innumerable models emerging in the research and development phases across various fields, including science, finance, and engineering. In this work, the authors review a large number of learning techniques aimed at project management. The analysis is largely focused on hybrid systems, which present computational models of blended learning techniques. At present, these models are at a very early stage and major efforts in terms of development is required within the scientific community. In addition, we provide a classification of all the areas within project management and the learning techniques that are used in each, presenting a brief study of the different artificial intelligence techniques used today and the areas of project management in which agents are being applied. This work should serve as a starting point for researchers who wish to work in the exciting world of artificial intelligence in relation to project leadership and management

    A Multi-Agent Architecture for the Design of Hierarchical Interval Type-2 Beta Fuzzy System

    Get PDF
    This paper presents a new methodology for building and evolving hierarchical fuzzy systems. For the system design, a tree-based encoding method is adopted to hierarchically link low dimensional fuzzy systems. Such tree structural representation has by nature a flexible design offering more adjustable and modifiable structures. The proposed hierarchical structure employs a type-2 beta fuzzy system to cope with the faced uncertainties, and the resulting system is called the Hierarchical Interval Type-2 Beta Fuzzy System (HT2BFS). For the system optimization, two main tasks of structure learning and parameter tuning are applied. The structure learning phase aims to evolve and learn the structures of a population of HT2BFS in a multiobjective context taking into account the optimization of both the accuracy and the interpretability metrics. The parameter tuning phase is applied to refine and adjust the parameters of the system. To accomplish these two tasks in the most optimal and faster way, we further employ a multi-agent architecture to provide both a distributed and a cooperative management of the optimization tasks. Agents are divided into two different types based on their functions: a structure agent and a parameter agent. The main function of the structure agent is to perform a multi-objective evolutionary structure learning step by means of the Multi-Objective Immune Programming algorithm (MOIP). The parameter agents have the function of managing different hierarchical structures simultaneously to refine their parameters by means of the Hybrid Harmony Search algorithm (HHS). In this architecture, agents use cooperation and communication concepts to create high-performance HT2BFSs. The performance of the proposed system is evaluated by several comparisons with various state of art approaches on noise-free and noisy time series prediction data sets and regression problems. The results clearly demonstrate a great improvement in the accuracy rate, the convergence speed and the number of used rules as compared with other existing approaches

    An overview of artificial intelligence applications for power electronics

    Get PDF

    Multiobjective programming for type-2 hierarchical fuzzy inference trees

    Get PDF
    This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure. Specifically, a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of HFIT takes place in two phases. Firstly, a nondominated sorting based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (low model’s complexity) with a high accuracy. Secondly, the differential evolution algorithm is applied to optimize the obtained tree’s parameters. In the obtained tree, each node has a different input’s combination, where the evolutionary process governs the input’s combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree’s structural optimization that accept inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by most of the other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selectio

    Analysis and Control of Mobile Robots in Various Environmental Conditions

    Get PDF
    The world sees new inventions each day, made to make the lifestyle of humans more easy and luxurious. In such global scenario, the robots have proved themselves to be an invention of great importance. The robots are being used in almost each and every field of the human world. Continuous studies are being done on them to make them simpler and easier to work with. All fields are being unraveled to make them work better in the human world without human interference. We focus on the navigation field of these mobile robots. The aim of this thesis is to find the controller that produces the most optimal path for the robot to reach its destination without colliding or damaging itself or the environment. The techniques like Fuzzy logic, Type 2 fuzzy logic, Neural networks and Artificial bee colony have been discussed and experimented to find the best controller that could find the most optimal path for the robot to reach its goal position. Simulation and Experiments have been done alike to find out the optimal path for the robot
    corecore