42,067 research outputs found

    Video foreground detection based on symmetric alpha-stable mixture models.

    Get PDF
    Background subtraction (BS) is an efficient technique for detecting moving objects in video sequences. A simple BS process involves building a model of the background and extracting regions of the foreground (moving objects) with the assumptions that the camera remains stationary and there exist no movements in the background. These assumptions restrict the applicability of BS methods to real-time object detection in video. In this paper, we propose an extended cluster BS technique with a mixture of symmetric alpha stable (SS) distributions. An on-line self-adaptive mechanism is presented that allows automated estimation of the model parameters using the log moment method. Results over real video sequences from indoor and outdoor environments, with data from static and moving video cameras are presented. The SS mixture model is shown to improve the detection performance compared with a cluster BS method using a Gaussian mixture model and the method of Li et al. [11]

    Incrementally Learned Mixture Models for GNSS Localization

    Full text link
    GNSS localization is an important part of today's autonomous systems, although it suffers from non-Gaussian errors caused by non-line-of-sight effects. Recent methods are able to mitigate these effects by including the corresponding distributions in the sensor fusion algorithm. However, these approaches require prior knowledge about the sensor's distribution, which is often not available. We introduce a novel sensor fusion algorithm based on variational Bayesian inference, that is able to approximate the true distribution with a Gaussian mixture model and to learn its parametrization online. The proposed Incremental Variational Mixture algorithm automatically adapts the number of mixture components to the complexity of the measurement's error distribution. We compare the proposed algorithm against current state-of-the-art approaches using a collection of open access real world datasets and demonstrate its superior localization accuracy.Comment: 8 pages, 5 figures, published in proceedings of IEEE Intelligent Vehicles Symposium (IV) 201

    Adaptive Importance Sampling in General Mixture Classes

    Get PDF
    In this paper, we propose an adaptive algorithm that iteratively updates both the weights and component parameters of a mixture importance sampling density so as to optimise the importance sampling performances, as measured by an entropy criterion. The method is shown to be applicable to a wide class of importance sampling densities, which includes in particular mixtures of multivariate Student t distributions. The performances of the proposed scheme are studied on both artificial and real examples, highlighting in particular the benefit of a novel Rao-Blackwellisation device which can be easily incorporated in the updating scheme.Comment: Removed misleading comment in Section

    A self-organising mixture network for density modelling

    Get PDF
    A completely unsupervised mixture distribution network, namely the self-organising mixture network, is proposed for learning arbitrary density functions. The algorithm minimises the Kullback-Leibler information by means of stochastic approximation methods. The density functions are modelled as mixtures of parametric distributions such as Gaussian and Cauchy. The first layer of the network is similar to the Kohonen's self-organising map (SOM), but with the parameters of the class conditional densities as the learning weights. The winning mechanism is based on maximum posterior probability, and the updating of weights can be limited to a small neighbourhood around the winner. The second layer accumulates the responses of these local nodes, weighted by the learning mixing parameters. The network possesses simple structure and computation, yet yields fast and robust convergence. Experimental results are also presente

    Probabilistic Point Cloud Modeling via Self-Organizing Gaussian Mixture Models

    Full text link
    This letter presents a continuous probabilistic modeling methodology for spatial point cloud data using finite Gaussian Mixture Models (GMMs) where the number of components are adapted based on the scene complexity. Few hierarchical and adaptive methods have been proposed to address the challenge of balancing model fidelity with size. Instead, state-of-the-art mapping approaches require tuning parameters for specific use cases, but do not generalize across diverse environments. To address this gap, we utilize a self-organizing principle from information-theoretic learning to automatically adapt the complexity of the GMM model based on the relevant information in the sensor data. The approach is evaluated against existing point cloud modeling techniques on real-world data with varying degrees of scene complexity.Comment: 8 pages, 6 figures, to appear in IEEE Robotics and Automation Letter

    Statistical framework for video decoding complexity modeling and prediction

    Get PDF
    Video decoding complexity modeling and prediction is an increasingly important issue for efficient resource utilization in a variety of applications, including task scheduling, receiver-driven complexity shaping, and adaptive dynamic voltage scaling. In this paper we present a novel view of this problem based on a statistical framework perspective. We explore the statistical structure (clustering) of the execution time required by each video decoder module (entropy decoding, motion compensation, etc.) in conjunction with complexity features that are easily extractable at encoding time (representing the properties of each module's input source data). For this purpose, we employ Gaussian mixture models (GMMs) and an expectation-maximization algorithm to estimate the joint execution-time - feature probability density function (PDF). A training set of typical video sequences is used for this purpose in an offline estimation process. The obtained GMM representation is used in conjunction with the complexity features of new video sequences to predict the execution time required for the decoding of these sequences. Several prediction approaches are discussed and compared. The potential mismatch between the training set and new video content is addressed by adaptive online joint-PDF re-estimation. An experimental comparison is performed to evaluate the different approaches and compare the proposed prediction scheme with related resource prediction schemes from the literature. The usefulness of the proposed complexity-prediction approaches is demonstrated in an application of rate-distortion-complexity optimized decoding

    Free Energy Methods for Bayesian Inference: Efficient Exploration of Univariate Gaussian Mixture Posteriors

    Full text link
    Because of their multimodality, mixture posterior distributions are difficult to sample with standard Markov chain Monte Carlo (MCMC) methods. We propose a strategy to enhance the sampling of MCMC in this context, using a biasing procedure which originates from computational Statistical Physics. The principle is first to choose a "reaction coordinate", that is, a "direction" in which the target distribution is multimodal. In a second step, the marginal log-density of the reaction coordinate with respect to the posterior distribution is estimated; minus this quantity is called "free energy" in the computational Statistical Physics literature. To this end, we use adaptive biasing Markov chain algorithms which adapt their targeted invariant distribution on the fly, in order to overcome sampling barriers along the chosen reaction coordinate. Finally, we perform an importance sampling step in order to remove the bias and recover the true posterior. The efficiency factor of the importance sampling step can easily be estimated \emph{a priori} once the bias is known, and appears to be rather large for the test cases we considered. A crucial point is the choice of the reaction coordinate. One standard choice (used for example in the classical Wang-Landau algorithm) is minus the log-posterior density. We discuss other choices. We show in particular that the hyper-parameter that determines the order of magnitude of the variance of each component is both a convenient and an efficient reaction coordinate. We also show how to adapt the method to compute the evidence (marginal likelihood) of a mixture model. We illustrate our approach by analyzing two real data sets
    • 

    corecore