3,018 research outputs found

    Novel Yinger Learning Variable Universe Fuzzy Controller

    Get PDF

    The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines

    Get PDF
    Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed

    Phenotypic Heterogeneity in Mycobacterial Stringent Response

    Get PDF
    A common survival strategy of microorganisms subjected to stress involves the generation of phenotypic heterogeneity in the isogenic microbial population enabling a subset of the population to survive under stress. In a recent study, a mycobacterial population of M. smegmatis was shown to develop phenotypic heterogeneity under nutrient depletion. The observed heterogeneity is in the form of a bimodal distribution of the expression levels of the Green Fluorescent Protein (GFP) as reporter with the gfp fused to the promoter of the rel gene. The stringent response pathway is initiated in the subpopulation with high rel activity.In the present study, we characterize quantitatively the single cell promoter activity of the three key genes, namely, mprA, sigE and rel, in the stringent response pathway with gfp as the reporter. The origin of bimodality in the GFP distribution lies in two stable expression states, i.e., bistability. We develop a theoretical model to study the dynamics of the stringent response pathway. The model incorporates a recently proposed mechanism of bistability based on positive feedback and cell growth retardation due to protein synthesis. Based on flow cytometry data, we establish that the distribution of GFP levels in the mycobacterial population at any point of time is a linear superposition of two invariant distributions, one Gaussian and the other lognormal, with only the coefficients in the linear combination depending on time. This allows us to use a binning algorithm and determine the time variation of the mean protein level, the fraction of cells in a subpopulation and also the coefficient of variation, a measure of gene expression noise.The results of the theoretical model along with a comprehensive analysis of the flow cytometry data provide definitive evidence for the coexistence of two subpopulations with overlapping protein distributions.Comment: 24 pages,8 figures, supplementary information and 5 supplementary figure

    Model Predictive Control of a Nonlinear Aeroelastic System Using Volterra Series Representations

    Get PDF
    The purpose of this study is to investigate the potential effectiveness of using a Volterra-based Model Predictive Control strategy to control a nonlinear aeroelastic system. Model Predictive Control (MPC), also known as Receding Horizon Control (RHC), entails computing optimal control inputs over a finite time horizon, applying a portion of the computed optimal control sequence, and then repeating the process over the next time horizon. The Volterra series provides input-output models of a dynamical system in terms of a series of integral operators of increasing order, where the first-order Volterra operator models the linear dynamics and the higher-order operators model the nonlinear dynamics. In this thesis, Volterra-based Model Predictive Control is applied to simulated linear and nonlinear pitch-plunge aeroelastic systems. A linear MPC controller based on a first-order Volterra model is used to control the linear aeroelastic system, and the results are compared to those obtained using a standard LQR controller and a LQR-based MPC strategy. The controller is implemented for regulator and tracking cases for a free-stream velocity of 6 m/s, a condition for which the open-loop linear system is stable, and a free-stream velocity of 12.5 m/s, which corresponds to an unstable flutter condition. Nonlinear MPC controllers, using second- and third-order Volterra models, are then used to control the nonlinear aeroelastic system for regulator and tracking cases at the stable flight condition. The stability and performance of the linear and nonlinear Volterra-based MPC strategies are discussed, and a detailed analysis of the effect of different parameters such as the optimization horizon, control horizon and control discretization, is provided. The results show that the linear MPC controller is able to successfully track a reference input for the stable condition and stabilizes the system at the unstable flutter condition. It is also shown that the incorporation of the second- and third-order Volterra kernels in the nonlinear MPC controller provides superior performance on the nonlinear aeroelastic system compared to the results obtained using only a linear model

    Online HVAC Temperature and Air Quality Control for Cost-efficient Commercial Buildings Based on Lyapunov Optimization Technique

    Get PDF
    Commercial buildings consume up to 35.5% of total electricity consumed in the United States. As a subsystem in the smart building management system, Heating, Ventilation, and Air Conditioning (HVAC) systems are responsible for 45% of electricity consumption in commercial buildings. Therefore, energy management of HVAC systems is of interest. The HVAC system brings thermal and air quality comfort to the occupants of the building, designing a controller that maximizes this comfort is the first objective. Inevitably, ideal comfort tracking means more energy consumption and energy cost. Hence, the more advanced objective is balancing the comfort-cost tradeoff. Since HVAC systems have nonlinear, complex and MIMO characteristics, modeling the system and formulating an optimization problem for them is challenging. Moreover, there are physical and comfort constraints to be satisfied, and randomness of parameters such as thermal disturbances, number of occupants in the building that affects the air quality, thermal and air quality setpoints we want to track, electricity price and outside temperature to be considered. Adding real time analysis to this problem furthers the challenge. In this thesis, utilizing Lyapunov optimization technique, we first transform the constraints to stability equations, and formulate a stochastic optimization problem, then we minimize the time average of the expected cost of the system while the cost is a weighted sum of the discomfort and energy cost. Results show that using the proposed algorithm and real data, the algorithm is feasible, and an optimal solution for the problem is achieved

    A self-organized model for cell-differentiation based on variations of molecular decay rates

    Get PDF
    Systemic properties of living cells are the result of molecular dynamics governed by so-called genetic regulatory networks (GRN). These networks capture all possible features of cells and are responsible for the immense levels of adaptation characteristic to living systems. At any point in time only small subsets of these networks are active. Any active subset of the GRN leads to the expression of particular sets of molecules (expression modes). The subsets of active networks change over time, leading to the observed complex dynamics of expression patterns. Understanding of this dynamics becomes increasingly important in systems biology and medicine. While the importance of transcription rates and catalytic interactions has been widely recognized in modeling genetic regulatory systems, the understanding of the role of degradation of biochemical agents (mRNA, protein) in regulatory dynamics remains limited. Recent experimental data suggests that there exists a functional relation between mRNA and protein decay rates and expression modes. In this paper we propose a model for the dynamics of successions of sequences of active subnetworks of the GRN. The model is able to reproduce key characteristics of molecular dynamics, including homeostasis, multi-stability, periodic dynamics, alternating activity, differentiability, and self-organized critical dynamics. Moreover the model allows to naturally understand the mechanism behind the relation between decay rates and expression modes. The model explains recent experimental observations that decay-rates (or turnovers) vary between differentiated tissue-classes at a general systemic level and highlights the role of intracellular decay rate control mechanisms in cell differentiation.Comment: 16 pages, 5 figure

    Control optimization, stabilization and computer algorithms for aircraft applications

    Get PDF
    Description based on: 22nd, Mar./Sept.1977 Edited by: Michael Athans, Alan S. Willsky, 1979/80-NASA Grant NGL 22-009-124. M.I.T. Project OSP 76265. Issued by: M.I.T. Electronic Systems Laboratory, -1978; M.I.T. Laboratory for Information and Decision Systems, 197
    • …
    corecore