67 research outputs found

    Analysis of an Adaptive Modulation and Coding scheme with HARQ for TCP traffic

    Get PDF
    In this paper, we analyze the aggregate TCP throughput performance of a wireless link utilizing Active Queue Management (AQM) and an Adaptive Modulation and Coding (AMC) scheme with Hybrid ARQ (HARQ) based on the probability of failure in the first transmission attempt. We assume packets arriving out-of-order at the wireless receiver due to random retransmissions are resequenced before being released to the network. For this reason, an approximate model for the delay experienced at the resequencing buffer is also presented. In the light of the results obtained from the presented analysis, we propose a threshold for the aforementioned probability of failure making the investigated AMC scheme work at an overall performance close to that of the optimum policy. © 2015 IEEE

    Analysis of discrete-time queueing systems with multidimensional state space

    Get PDF

    Differential Radio Link Protocol: An Improvement To Tcp Over Wireless Networks

    Get PDF
    New generations of wireless cellular networks, including 3G and 4G technologies, are envisaged to support more mobile users and a variety of wireless multimedia services. With an increasing demand for wireless multimedia services, the performance of TCP becomes a bottleneck as it cannot differentiate between the losses due to the nature of air as a medium and high data load on the network that leads to congestion. This misinterpretation by TCP leads to a reduction in the congestion window size thereby resulting in reduced throughput of the system. To overcome this scenario Radio Link Protocols are used at a lower layer which hides from TCP the channel related losses and effectively increases the throughput. This thesis proposes enhancements to the radio link protocol that works underneath TCP by identifying decisive frames and categorizing them as {\em crucial} and {\em non-crucial}. The fact that initial frames from the same upper layer segment can afford a few trials of retransmissions and the later frames cannot, motivates this work. The frames are treated differentially with respect to FEC coding and ARQ schemes. Specific cases of FEC and ARQ strategies are then considered and it is shown qualitatively as how the differential treatment of frames can improve the performance of the RLP and in effect that of TCP over wireless networks

    Packet delay and sequence number space in the radio link protocol layer

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (leaf 85).by Euree Y. Kim.S.B.and M.Eng

    JTIT

    Get PDF
    kwartalni

    Load Balancing for the Agile All-Photonic Network

    Get PDF
    The Agile All-Photonic Network (AAPN) uses Time Division Multiplexing (TDM) to better utilize the bandwidth of Wavelength Division Multiplexing (WDM) systems. It uses agile all-photonic switches as advances in the photonic switching technology made the design of all-photonic devices with switching latency in the sub-microseconds feasible. The network has a simplified overlaid star architecture that can be deployed in a Metropolitan Area Network (MAN) or a Wide Area Network (WAN) environment. This overlaid architecture, as opposed to general mesh architecture, scales network capacity to multiples of Tera bits per second, simplif�ies routing, increases reliability, eliminates wavelength conversion, and the need for accurate traffic engineering. The objective of this thesis is to propose and analyze dif�ferent load balancing methods for the deployment of the AAPN network in a WAN environment. The analysis should provide interested Internet Service Providers (ISPs) with a comprehensive study of load balancing methods for using the AAPN network as their backbone network. The methods balance the load at the ow level to reduce packet reordering. The methods are stateless and can compute routes quickly based on the packet flow identi�er. This is an important issue when deploying AAPN as an Internet backbone network where the number of flows is large and storing ow state in lookup tables can limit the network performance. The load balancing methods, deployed at the edge nodes, require reliable signaling with the bandwidth schedulers at the core nodes. To provide a reliable channel between the edge and core nodes, the Control Messages Delivery Protocol (CMDP) is proposed as part of this thesis work. The protocol is designed to work in environments where propagation delays are long and/or the error rates are high. It is used to deliver a burst of short messages in sequence and with no errors. Combined with the reliable routing protocol proposed previously for the AAPN network, they form the control plane for the network. To extend the applicability of the load balancing methods to topologies beyond AAPN overlaid star topology, the Valiant Load Balancing (VLB) method is used to build an overlaid star topology on top of the physical network. The VLB method provides guaranteed performance for highly variable tra�c matrices within the hose traffic model constraints. In addition to the guaranteed performance, deploying the VLB method in the AAPN network, eliminates signaling and replaces the dynamic core schedulers with static scheduler that can accommodate all tra�c matrices within the hose tra�c model boundaries
    corecore