24 research outputs found

    Multidimensional CNN and LSTM for Predicting Epilepsy Seizure Activities

    Get PDF
    Epilepsy is a chronic neurological disease caused by sudden abnormal brain discharges, leading to temporary brain dysfunction. It can manifest in various ways, including paroxysmal movement, sensory, autonomic nerve, awareness, and mental abnormalities. It is now the second largest neurological disorder worldwide, affecting around 70 million people and increasing by approximately 2 million new cases each year. While about 70% of epilepsy patients can control their seizures with regular antiepileptic drugs, surgery, or nerve stimulation treatments, the remaining 30% suffer from intractable epilepsy without effective treatment, causing significant burden and potential danger to their lives. Early prediction and treatment are crucial to prevent harm to patients. Electroencephalogram (EEG) is a valuable tool for diagnosing epilepsy as it records the brain's electrical activity. EEG can be divided into scalp and intracranial types, and doctors typically analyze EEG signals of epileptic patients into four periods

    Effective electroencephalogram based epileptic seizure detection using support vector machine and statistical moment’s features

    Get PDF
    Epilepsy is one of the widespread disorders. It is a noncommunicable disease that affects the human nerve system. Seizures are abnormal patterns of behavior in the electricity of the brain which produce symptoms like losing consciousness, attention or convulsions in the whole body. This paper demonstrates an effective electroencephalogram (EEG) based seizure detection method using discrete wavelet transformation (DWT) for signal decomposition to extract features. An automatic channel selection method was proposed by the researcher to select the best channel from 23 channels based on maximum variance value. The records were segmented into a nonoverlapping segment with long 1-S. The support vector machine (SVM) model was used to automatically detect segments that contain seizures, using both frequency and time domain statistical moment features. The experimental result was obtained from 24 patients in CHB-MIT database. The average accuracy is 94.1, sensitivity is 93.5, specificity is 94.6 and the false positive rate average is 0.054

    A Lightweight Deep Learning Model for The Early Detection of Epilepsy

    Get PDF
    Epilepsy is a neurological disorder and non communicable disease which affects patient's health, During this seizure occurrence normal brain function activity will be interrupted. It may happen anywhere and anytime so it leads to very dangerous problems like sudden unexpected death. Worldwide seizure affected people are around 65% million. So it must be considered as serious problem for the early prediction.  A number of different types of screening tests will be conducted to assess the severity of the symptoms such as EEG,MRI, ECG, and ECG. There are several reasons why EEG signals are used, including their affordability, portability, and ability to display. The proposed model used bench-marked CHB-MIT EEG datasets for the implementation of early prediction of epilepsy ensures its seriousness and leads to perfect diagnosis. Researchers proposed Various ML /DL methods to  try for the early prediction of epilepsy but still it has some challenges in terms of efficiency and precision Seizure detection techniques typically employ the use of convolutional neural networks (CNN) and a bidirectional short- and long-term memory (Bi-LSTM) model in the realm of deep learning. This method leverages the strengths of both models to effectively analyze electroencephalogram (EEG) data and detect seizure patterns. These light weight models have been found to be effective in automatically detecting seizures in deep learning techniques with an accuracy rate of up to 96.87%. Hence, this system has the potential to be utilized for categorizing other types of physiological signals too, but additional research is required to confirm this

    Ensemble approach on enhanced compressed noise EEG data signal in wireless body area sensor network

    Get PDF
    The Wireless Body Area Sensor Network (WBASN) is used for communication among sensor nodes operating on or inside the human body in order to monitor vital body parameters and movements. One of the important applications of WBASN is patients’ healthcare monitoring of chronic diseases such as epileptic seizure. Normally, epileptic seizure data of the electroencephalograph (EEG) is captured and compressed in order to reduce its transmission time. However, at the same time, this contaminates the overall data and lowers classification accuracy. The current work also did not take into consideration that large size of collected EEG data. Consequently, EEG data is a bandwidth intensive. Hence, the main goal of this work is to design a unified compression and classification framework for delivery of EEG data in order to address its large size issue. EEG data is compressed in order to reduce its transmission time. However, at the same time, noise at the receiver side contaminates the overall data and lowers classification accuracy. Another goal is to reconstruct the compressed data and then recognize it. Therefore, a Noise Signal Combination (NSC) technique is proposed for the compression of the transmitted EEG data and enhancement of its classification accuracy at the receiving side in the presence of noise and incomplete data. The proposed framework combines compressive sensing and discrete cosine transform (DCT) in order to reduce the size of transmission data. Moreover, Gaussian noise model of the transmission channel is practically implemented to the framework. At the receiving side, the proposed NSC is designed based on weighted voting using four classification techniques. The accuracy of these techniques namely Artificial Neural Network, Naïve Bayes, k-Nearest Neighbour, and Support Victor Machine classifiers is fed to the proposed NSC. The experimental results showed that the proposed technique exceeds the conventional techniques by achieving the highest accuracy for noiseless and noisy data. Furthermore, the framework performs a significant role in reducing the size of data and classifying both noisy and noiseless data. The key contributions are the unified framework and proposed NSC, which improved accuracy of the noiseless and noisy EGG large data. The results have demonstrated the effectiveness of the proposed framework and provided several credible benefits including simplicity, and accuracy enhancement. Finally, the research improves clinical information about patients who not only suffer from epilepsy, but also neurological disorders, mental or physiological problems

    Epileptic seizure prediction using machine learning techniques

    Get PDF
    Epileptic seizures affect about 1% of the world’s population, thus making it the fourth most common neurological disease, this disease is considered a neurological disorder characterized by the abnormal activity of the brain. Part of the population suffering from this disease is unable to avail themselves of any treatment, as this treatment has no beneficial effect on the patient. One of the main concerns associated with this disease is the damage caused by uncontrollable seizures. This damage affects not only the patient himself but also the people around him. With this situation in mind, the goal of this thesis is, through methods of Machine Learning, to create an algorithm that can predict epileptic seizures before they occur. To predict these seizures, the electroencephalogram (EEG) will be employed, since it is the most commonly used method for diagnosing epilepsy. Of the total 23 channels available, only 8 will be used, due to their location. When a seizure occurs, besides the visible changes in the EEG signal, at the moment of the seizure, the alterations before and after the epileptic seizure are also noticeable. These stages have been named in the literature: • Preictal: the moment before the epileptic seizure; • Ictal: the moment of the seizure; • Postictal: the moment after the seizure; • Interictal: space of time between seizures. The goal of the predictive algorithm will be to classify the different classes and study different classification problems by using supervised learning techniques, more precisely a classifier. By performing this classification when indications are detected that a possible epileptic seizure will occur, the patient will then be warned so that he can prepare for the seizure.Crises epiléticas afetam cerca de 1% da população mundial, tornando-a assim a quarta doença neurológica mais comum. Esta é considerada uma doença caracterizada pela atividade anormal do cérebro. Parte da população que sofre desta condição não consegue recorrer a qualquer tratamento, pois este não apresenta qualquer efeito benéfico no paciente. Uma das principais preocupações associadas com este problema são os danos causados pelas convulsões imprevisíveis. Estes danos não afetam somente o próprio paciente, como também as pessoas que o rodeiam. Com esta situação em mente, o objetivo desta dissertação consiste em, através de métodos de Machine Learning, criar um algoritmo capaz de prever as crises epiléticas antes da sua ocorrência. Para proceder à previsão destas convulsões, será utilizado o eletroencefalograma (EEG), uma vez que é o método mais usado para o diagnóstico de epilepsia. Serão utilizados apenas 8 dos 23 canais disponíveis, devido à sua localização. Quando ocorre uma crise, além das alterações visíveis no sinal EEG, não só no momento da crise, são também notáveis alterações antes e após a convulsão. A estas fases a literatura nomeou: • Pre-ictal: momento anterior à crise epilética; • Ictal: momento da convulsão; • Pós-ictal: momento posterior à crise; • Interictal: espaço de tempo entre convulsões. O objetivo do algoritmo preditivo será fazer a classificação das diferentes classes e o estudo de diferentes problemas de classificação, através do uso de técnicas de machine learning, mais precisamente um classificador. Ao realizar esta classificação, quando forem detetados indícios de que uma possível crise epilética irá ocorrer, o paciente será então avisado, podendo assim preparar-se para esta

    Improving the Generalisability of Brain Computer Interface Applications via Machine Learning and Search-Based Heuristics

    Get PDF
    Brain Computer Interfaces (BCI) are a domain of hardware/software in which a user can interact with a machine without the need for motor activity, communicating instead via signals generated by the nervous system. These interfaces provide life-altering benefits to users, and refinement will both allow their application to a much wider variety of disabilities, and increase their practicality. The primary method of acquiring these signals is Electroencephalography (EEG). This technique is susceptible to a variety of different sources of noise, which compounds the inherent problems in BCI training data: large dimensionality, low numbers of samples, and non-stationarity between users and recording sessions. Feature Selection and Transfer Learning have been used to overcome these problems, but they fail to account for several characteristics of BCI. This thesis extends both of these approaches by the use of Search-based algorithms. Feature Selection techniques, known as Wrappers use ‘black box’ evaluation of feature subsets, leading to higher classification accuracies than ranking methods known as Filters. However, Wrappers are more computationally expensive, and are prone to over-fitting to training data. In this thesis, we applied Iterated Local Search (ILS) to the BCI field for the first time in literature, and demonstrated competitive results with state-of-the-art methods such as Least Absolute Shrinkage and Selection Operator and Genetic Algorithms. We then developed ILS variants with guided perturbation operators. Linkage was used to develop a multivariate metric, Intrasolution Linkage. This takes into account pair-wise dependencies of features with the label, in the context of the solution. Intrasolution Linkage was then integrated into two ILS variants. The Intrasolution Linkage Score was discovered to have a stronger correlation with the solutions predictive accuracy on unseen data than Cross Validation Error (CVE) on the training set, the typical approach to feature subset evaluation. Mutual Information was used to create Minimum Redundancy Maximum Relevance Iterated Local Search (MRMR-ILS). In this algorithm, the perturbation operator was guided using an existing Mutual Information measure, and compared with current Filter and Wrapper methods. It was found to achieve generally lower CVE rates and higher predictive accuracy on unseen data than existing algorithms. It was also noted that solutions found by the MRMR-ILS provided CVE rates that had a stronger correlation with the accuracy on unseen data than solutions found by other algorithms. We suggest that this may be due to the guided perturbation leading to solutions that are richer in Mutual Information. Feature Selection reduces computational demands and can increase the accuracy of our desired models, as evidenced in this thesis. However, limited quantities of training samples restricts these models, and greatly reduces their generalisability. For this reason, utilisation of data from a wide range of users is an ideal solution. Due to the differences in neural structures between users, creating adequate models is difficult. We adopted an existing state-of-the-art ensemble technique Ensemble Learning Generic Information (ELGI), and developed an initial optimisation phase. This involved using search to transplant instances between user subsets to increase the generalisability of each subset, before combination in the ELGI. We termed this Evolved Ensemble Learning Generic Information (eELGI). The eELGI achieved higher accuracy than user-specific BCI models, across all eight users. Optimisation of the training dataset allowed smaller training sets to be used, offered protection against neural drift, and created models that performed similarly across participants, regardless of neural impairment. Through the introduction and hybridisation of search based algorithms to several problems in BCI we have been able to show improvements in modelling accuracy and efficiency. Ultimately, this represents a step towards more practical BCI systems that will provide life altering benefits to users
    corecore