286 research outputs found

    3D medical volume segmentation using hybrid multiresolution statistical approaches

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright Ā© 2010 S AlZuā€™bi and A Amira.3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations

    Planning and Evaluation of Radio-Therapeutic Treatment of Head-and-Neck Cancer Using PET/CT scanning

    Get PDF

    Development and characterization of methodology and technology for the alignment of fMRI time series

    Get PDF
    This dissertation has developed, implemented and tested a novel computer based system (AUTOALIGN) that incorporates an algorithm for the alignment of functional Magnetic Resonance Image (fMRI) time series. The algorithm assumes the human brain to be a rigid body and computes a head coordinate system on the basis of three reference points that lie on the directions correspondent to two of the eigenvectors of inertia of the volume, at the intersections with the head boundary. The eigenvectors are found weighting the inertia components with the voxel\u27s intensity values assumed as mass. The three reference points are found in the same position, relative to the origin of the head coordinate system, in both test and reference brain images. Intensity correction is performed at sub-voxel accuracy by tri-linear interpolation. A test fMR brain volume in which controlled simulations of rigid-body transformations have been introduced has preliminarily assessed system performance. Further experimentation has been conducted with real fMRI time series. Rigid-body transformations have been retrieved automatically and the values of the motion parameters compared to those obtained by the Statistical Parametric Mapping (SPM99), and the Automatic Image Registration (AIR 3.08). Results indicated that AUTOALIGN offers subvoxel accuracy in correcting both misalignment and intensity among time points in fMR images time series, and also that its performance is comparable to that of SPM99 and AIR3.08
    • ā€¦
    corecore