1,843 research outputs found

    Time-Contrastive Learning Based Deep Bottleneck Features for Text-Dependent Speaker Verification

    Get PDF
    There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV). However, a moderate success has been achieved. A recent study [1] presented a time contrastive learning (TCL) concept to explore the non-stationarity of brain signals for classification of brain states. Speech signals have similar non-stationarity property, and TCL further has the advantage of having no need for labeled data. We therefore present a TCL based BN feature extraction method. The method uniformly partitions each speech utterance in a training dataset into a predefined number of multi-frame segments. Each segment in an utterance corresponds to one class, and class labels are shared across utterances. DNNs are then trained to discriminate all speech frames among the classes to exploit the temporal structure of speech. In addition, we propose a segment-based unsupervised clustering algorithm to re-assign class labels to the segments. TD-SV experiments were conducted on the RedDots challenge database. The TCL-DNNs were trained using speech data of fixed pass-phrases that were excluded from the TD-SV evaluation set, so the learned features can be considered phrase-independent. We compare the performance of the proposed TCL bottleneck (BN) feature with those of short-time cepstral features and BN features extracted from DNNs discriminating speakers, pass-phrases, speaker+pass-phrase, as well as monophones whose labels and boundaries are generated by three different automatic speech recognition (ASR) systems. Experimental results show that the proposed TCL-BN outperforms cepstral features and speaker+pass-phrase discriminant BN features, and its performance is on par with those of ASR derived BN features. Moreover,....Comment: Copyright (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Histogram equalization for robust text-independent speaker verification in telephone environments

    Get PDF
    Word processed copy. Includes bibliographical references

    Speaker Recognition using Supra-segmental Level Excitation Information

    Get PDF
    Speaker specific information present in the excitation signal is mostly viewed from sub-segmental, segmental and supra-segmental levels. In this work, the supra-segmental level information is explored for recognizing speakers. Earlier study has shown that, combined use of pitch and epoch strength vectors provides useful supra-segmental information. However, the speaker recognition accuracy achieved by supra-segmental level feature is relatively poor than other levels source information. May be the modulation information present at the supra-segmental level of the excitation signal is not manifested properly in pith and epoch strength vectors. We propose a method to model the supra-segmental level modulation information from residual mel frequency cepstral coefficient (R-MFCC) trajectories. The evidences from R-MFCC trajectories combined with pitch and epoch strength vectors are proposed to represent supra-segmental information. Experimental results show that compared to pitch and epoch strength vectors, the proposed approach provides relatively improved performance. Further, the proposed supra-segmental level information is relatively more complimentary to other levels information
    • …
    corecore