5,946 research outputs found

    Wide-address operating system elements

    Get PDF

    Automatic road network extraction in suburban areas from aerial images

    Get PDF
    [no abstract

    Asynchronous Validity Resolution in Sequentially Consistent Shared Virtual Memory

    Get PDF
    Shared Virtual Memory (SVM) is an effort to provide a mechanism for a distributed system, such as a cluster, to execute shared memory parallel programs. Unfortunately, SVM has performance problems due to its underlying distributed architecture. Recent developments have increased performance of SVM by reducing communication. Unfortunately this performance gain was only possible by increasing programming complexity and by restricting the types of programs allowed to execute in the system. Validity resolution is the process of resolving the validity of a memory object such as a page. Current SVM systems use synchronous or deferred validity resolution techniques in which user processing is blocked during the validity resolution process. This is the case even when resolving validity of false shared variables. False-sharing occurs when two or more processes access unrelated variables stored within the same shared block of memory and at least one of the processes is writing. False sharing unnecessarily reduces overall performance of SVM systems?because user processing is blocked during validity resolution although no actual data dependencies exist. This thesis presents Asynchronous Validity Resolution (AVR), a new approach to SVM which reduces the performance losses associated with false sharing while maintaining the ease of programming found with regular shared memory parallel programming methodology. Asynchronous validity resolution allows concurrent user process execution and data validity resolution. AVR is evaluated by com-paring performance of an application suite using both an AVR sequentially con-sistent SVM system and a traditional sequentially consistent (SC) SVM system. The results show that AVR can increase performance over traditional sequentially consistent SVM for programs which exhibit false sharing. Although AVR outperforms regular SC by as much as 26%, performance of AVR is dependent on the number of false-sharing vs. true-sharing accesses, the number of pages in the program’s working set, the amount of user computation that completes per page request, and the internodal round-trip message time in the system. Overall, the results show that AVR could be an important member of the arsenal of tools available to parallel programmers

    Automatic road network extraction in suburban areas from high resolution aerial images

    Get PDF
    In this paper a road network extraction algorithm for suburban areas is presented. The algorithm uses colour infrared (CIR) images and digital surface models (DSM). The CIR data allow a good separation between vegetation and roads. The image is first segmented in two steps: an initial segmentation using the normalized cuts algorithm and a subsequent grouping of the segments. Road parts are extracted from the segments and then first connected locally to form subgraphs, because roads are often not extracted as a whole due to disturbances in their appearance. Subgraphs can contain several branches, which are resolved by a subsequent optimisation. The optimisation uses criteria describing the relations between the road parts as well as context objects such as trees, vehicles and buildings. The resulting road strings, represented by their centre lines, are then connected to a road network by searching for junctions at the ends of the roads. Small isolated roads are eliminated because they are likely to be false extractions. Results are presented for three image subsets coming from two different data sets, and a quantitative analysis of the completeness and correctness is shown from nine image subsets from the two data sets. The results show that the approach is suitable for the extraction of roads in suburban areas from aerial images

    A Migratable User-Level Process Package for PVM

    Get PDF
    Shared, multi-user, workstation networks are characterized by unpredictable variability in system load. Further, the concept of workstation ownership is typically present. For efficient and unobtrusive computing in such environments, applications must not only overlap their computation with communication but also redistribute their computations adaptively based on changes in workstation availability and load. Managing these issues at application level leads to programs that are difficult to write and debug. In this paper, we present a system that manages this dynamic multi-processor environment while exporting a simple message-based programming model of a dedicated, distributed memory multiprocessor to applications. Programmers are thus insulated from the many complexities of the dynamic environment at the same time are able to achieve the benefits of multi-threading, adaptive load distribution and unobtrusive computing. To support the dedicated multi-processor model efficiently, the system defines a new kind of virtual processor called User-Level Process (ULP) that can be used to implement efficient multi-threading and application-transparent migration. The viability of ULPs is demonstrated through UPVM, a prototype implementation of the PVM message passing interface using ULPs. Typically, existing PVM programs written in Single Program Multiple Data (SPMD) style need only be re-compiled to use this package. The design of the package is presented and the performance analyzed with respect to both micro-benchmarks and some complete PVM applications. Finally, we discuss aspects of the ULP package that affect its portability and its support for heterogeneity, application transparency, and application debugging
    • …
    corecore