24 research outputs found

    A Threat Intelligence Framework for Access Control Security In The Oil Industry

    Get PDF
    The research investigates the problem raised by the rapid development in the technology industry giving security concerns in facilities built by the energy industry containing diverse platforms. The difficulty of continuous updates to network security architecture and assessment gave rise to the need to use threat intelligence frameworks to better asses and address networks security issues. Focusing on access control security to the ICS and SCADA systems that is being utilized to carry out mission critical and life threatening operations. The research evaluates different threat intelligence frameworks that can be implemented in the industry seeking the most suitable and applicable one that address the issue and provide more security measures. The validity of the result is limited to the same environment that was researched as well as the technologies being utilized. The research concludes that it is possible to utilize a Threat Intelligence framework to prioritize security in Access Control Measures in the Oil Industry

    Performance evaluation of HIP-based network security solutions

    Get PDF
    Abstract. Host Identity Protocol (HIP) is a networking technology that systematically separates the identifier and locator roles of IP addresses and introduces a Host Identity (HI) name space based on a public key security infrastructure. This modification offers a series of benefits such as mobility, multi-homing, end-to-end security, signaling, control/data plane separation, firewall security, e.t.c. Although HIP has not yet been sufficiently applied in mainstream communication networks, industry experts foresee its potential as an integral part of next generation networks. HIP can be used in various HIP-aware applications as well as in traditional IP-address-based applications and networking technologies, taking middle boxes into account. One of such applications is in Virtual Private LAN Service (VPLS), VPLS is a widely used method of providing Ethernet-based Virtual Private Network that supports the connection of geographically separated sites into a single bridged domain over an IP/MPLS network. The popularity of VPLS among commercial and defense organizations underscores the need for robust security features to protect both data and control information. After investigating the different approaches to HIP, a real world testbed is implemented. Two experiment scenarios were evaluated, one is performed on two open source Linux-based HIP implementations (HIPL and OpenHIP) and the other on two sets of enterprise equipment from two different companies (Tempered Networks and Byres Security). To account for a heterogeneous mix of network types, the Open source HIP implementations were evaluated on different network environments, namely Local Area Network (LAN), Wireless LAN (WLAN), and Wide Area Network (WAN). Each scenario is tested and evaluated for performance in terms of throughput, latency, and jitter. The measurement results confirmed the assumption that no single solution is optimal in all considered aspects and scenarios. For instance, in the open source implementations, the performance penalty of security on TCP throughput for WLAN scenario is less in HIPL than in OpenHIP, while for WAN scenario the reverse is the case. A similar outcome is observed for the UDP throughput. However, on latency, HIPL showed lower latency for all three network test scenarios. For the legacy equipment experiment, the penalty of security on TCP throughput is about 19% compared with the non-secure scenario while latency is increased by about 87%. This work therefore provides viable information for researchers and decision makers on the optimal solution to securing their VPNs based on the application scenarios and the potential performance penalties that come with each approach.HIP-pohjaisten tietoliikenneverkkojen turvallisuusratkaisujen suorituskyvyn arviointi. Tiivistelmä. Koneen identiteettiprotokolla (HIP, Host Identity Protocol) on tietoliikenneverkkoteknologia, joka käyttää erillistä kerrosta kuljetusprotokollan ja Internet-protokollan (IP) välissä TCP/IP-protokollapinossa. HIP erottaa systemaattisesti IP-osoitteen verkko- ja laite-osat, sekä käyttää koneen identiteetti (HI) -osaa perustuen julkisen avainnuksen turvallisuusrakenteeseen. Tämän hyötyjä ovat esimerkiksi mobiliteetti, moniliittyminen, päästä päähän (end-to-end) turvallisuus, kontrolli-informaation ja datan erottelu, kohtaaminen, osoitteenmuutos sekä palomuurin turvallisuus. Teollisuudessa HIP-protokolla nähdään osana seuraavan sukupolven tietoliikenneverkkoja, vaikka se ei vielä olekaan yleistynyt laajaan kaupalliseen käyttöön. HIP–protokollaa voidaan käyttää paitsi erilaisissa HIP-tietoisissa, myös perinteisissä IP-osoitteeseen perustuvissa sovelluksissa ja verkkoteknologioissa. Eräs tällainen sovellus on virtuaalinen LAN-erillisverkko (VPLS), joka on laajasti käytössä oleva menetelmä Ethernet-pohjaisen, erillisten yksikköjen ja yhden sillan välistä yhteyttä tukevan, virtuaalisen erillisverkon luomiseen IP/MPLS-verkon yli. VPLS:n yleisyys sekä kaupallisissa- että puolustusorganisaatioissa korostaa vastustuskykyisten turvallisuusominaisuuksien tarpeellisuutta tiedon ja kontrolliinformaation suojauksessa. Tässä työssä tutkitaan aluksi HIP-protokollan erilaisia lähestymistapoja. Teoreettisen tarkastelun jälkeen käytännön testejä suoritetaan itse rakennetulla testipenkillä. Tarkasteltavat skenaariot ovat verrata Linux-pohjaisia avoimen lähdekoodin HIP-implementaatioita (HIPL ja OpenHIP) sekä verrata kahden eri valmistajan laitteita (Tempered Networks ja Byres Security). HIP-implementaatiot arvioidaan eri verkkoympäristöissä, jota ovat LAN, WLAN sekä WAN. Kaikki testatut tapaukset arvioidaan tiedonsiirtonopeuden, sen vaihtelun (jitter) sekä latenssin perusteella. Mittaustulokset osoittavat, että sama ratkaisu ei ole optimaalinen kaikissa tarkastelluissa tapauksissa. Esimerkiksi WLAN-verkkoa käytettäessä turvallisuuden aiheuttama häviö tiedonsiirtonopeudessa on HIPL:n tapauksessa OpenHIP:iä pirnempi, kun taas WAN-verkon tapauksessa tilanne on toisinpäin. Samanlaista käyttäytymistä havaitaan myös UDP-tiedonsiirtonopeudessa. HIPL antaa kuitenkin pienimmän latenssin kaikissa testiskenaarioissa. Eri valmistajien laitteita vertailtaessa huomataan, että TCP-tiedonsiirtonopeus huononee 19 ja latenssi 87 prosenttia verrattuna tapaukseen, jossa turvallisuusratkaisua ei käytetä. Näin ollen tämän työn tuottama tärkeä tieto voi auttaa alan toimijoita optimaalisen verkkoturvallisuusratkaisun löytämisessä VPN-pohjaisiin sovelluksiin

    Integrity Verification for SCADA Devices Using Bloom Filters and Deep Packet Inspection

    Get PDF
    In the past, SCADA networks were made secure through undocumented, proprietary protocols and isolation from other networks. Today, modern information technology (IT) solutions have provided a means to enhance remote access through use of the Internet. Unfortunately, opening SCADA networks to the Internet has provided routes of attack. Cyber attacks on these networks are becoming more common and can inflict considerable damage to critical infrastructure systems. Furthermore, devices on these networks can be infected with malware that causes them to falsify their responses to operators, concealing alternate operation or hiding alarm conditions. Considering their applications, securing these networks translates to improved physical security in the real world. Since modern IT solutions are impractical to deploy in the resource constrained SCADA networks, other solutions must be researched. This research evaluates an integrity verification system implemented on a Xilinx ML507 development board called the SIEVE system. The design incorporates Bloom filters and SCADA-specific intrusion detection techniques to speed identification of invalid commands and current sensing to investigate whether or not a device correctly carried out a given command. Results show that the SIEVE system is able to inspect and correctly identify 100% of network traffic at a 200 command per second frequency. Correct identification of valid MODBUS/TCP traffic begins to fail at 350 commands per second, introducing false positives. Tests of the Bloom filters show that they reduce the time necessary to process and log invalid MODBUS/TCP commands by 4.5% to 2328.06% depending on the number of operations performed by the command

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    The Proceedings of 15th Australian Information Security Management Conference, 5-6 December, 2017, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fifteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The papers cover topics from vulnerabilities in “Internet of Things” protocols through to improvements in biometric identification algorithms and surveillance camera weaknesses. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Twenty two papers were submitted from Australia and overseas, of which eighteen were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conference. To our sponsors, also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    Cybersecurity for Nuclear Power Plants Working with Simulator's Data and Machine Learning Algorithms to Find Abnormalities at Nuclear Power Plants

    Get PDF
    Cybersecurity has the utmost importance for nuclear power plants (NPPs). Demand for clean and constant energy has increased the need and use of NPPs. Countries want to have and maintain secure NPPs both physically (well-studied area) and digitally. We live in a digital world, and cyber-attacks have skyrocketed in recent years. This study explores the cyber risk for NPPs, digital attacks, potential future attacks, international aspects, and law and policy requirements of cyber protection for nuclear power plants. With the help of data analysis and machine learning algorithms, extra monitoring can be conducted on plants' data. Data monitoring applications require comprehensive data to build models and develop solutions. However, nuclear facilities do not share their data because of security concerns. Plant simulators are heavily used for training people and conducting experiments. In this thesis, we inspect plant simulators to assess their usability by people with a technical background such as cyber experts, information technology technicians, and software developers. People responsible for protecting digital systems can benefit from the help of data analytic tools and machine learning models to detect abnormalities. We study machine learning models on simulator data to examine their potential in identifying anomalies

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions
    corecore