157 research outputs found

    Enhanced Stegano-Cryptographic Model for Secure Electronic Voting

    Get PDF
    The issue of security in Information and Communication Technology has been identified as the most critical barrier in the widespread adoption of electronic voting (e-voting). Earlier cryptographic models for secure e-voting are vulnerable to attacks and existing stegano-cryptographic models can be manipulated by an eavesdropper. These shortcomings of existing models of secure e-voting are threats to confidentiality, integrity and verifiability of electronic ballot which are critical to overall success of e-democratic decision making through e-voting.This paper develops an enhanced stegano-cryptographic model for secure electronic voting system in poll-site, web and mobile voting scenarios for better citizens’ participation and credible e-democratic election. The electronic ballot was encrypted using Elliptic Curve Cryptography and Rivest-Sharma-Adleman cryptographic algorithm. The encrypted voter’s ballot was scattered and hidden in the Least Significant Bit (LSB) of the cover media using information hiding attribute of modified LSB-Wavelet steganographic algorithm. The image quality of the model, stego object was quantitatively assessed using Peak Signal to Noise Ratio (PSNR), Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE) and Structural Similarity Index Metrics (SSIM).The results after quantitative performance evaluation shows that the developed stegano-cryptographic model has generic attribute of secured e-voting relevant for the delivery of credible e-democratic decision making. The large scale implementation of the model would be useful to deliver e-voting of high electoral integrity and political trustworthiness, where genuine e-elections are conducted for the populace by government authority. Keywords: Electronic Voting, Cryptography, Steganography, Video, Image, Wavelet, Securit

    A Review on Combined Techniques of Cryptography and Steganography using Color QR code

    Get PDF
    In the internet eras, where security is main concern and access to any service is quite easy, the issue of cyber security aimed at protecting customer data and thus this leads to creation of such a safe environment where user can be ensured of safety and security of all fields which aftereffect the usage of cryptography and steganography has increased. Cryptography encrypts a message so it cannot be understood while the Steganography hides the message inside a cover medium so that it?s concealed. In this paper we use color QR (Quick Response) Codes which are 2-dimensional bar codes that encode data or text strings and color QR code for increase QR code capacity. They are able to encode the information in both vertical and horizontal direction, thus able to encode more information, for secret communication we combine the concepts of Cryptography and Steganography and color QR codes. We use Cryptography side for encrypting the message by a color QR code encoder and thus creating a color QR code, whereas steganography hides the color QR code inside a cover image, after the encryption process, the color QR code image which has the original data is watermarked over a cover image using Spatial domain (LSB) and transform domain (DCT& DWT). In reverse, De-Watermarking extracts and decrypts the color QR coded data image from the Stego- image to recover the original image

    Security System for Safe Transmission of Medical Images

    Get PDF
    This paper develops an optimised embedding of payload in medical images by using genetic optimisation. The goal is to preserve the region of interest from being distorted because of the watermark. By using this system there is no need to manually define the region of interest by experts as the system will apply the genetic optimisation to select the parts of image that can carry the watermark guaranteeing less distortion. The experimental results assure that genetic based optimisation is useful for performing steganography with less mean square error percentage

    Integration of biometrics and steganography: A comprehensive review

    Get PDF
    The use of an individual’s biometric characteristics to advance authentication and verification technology beyond the current dependence on passwords has been the subject of extensive research for some time. Since such physical characteristics cannot be hidden from the public eye, the security of digitised biometric data becomes paramount to avoid the risk of substitution or replay attacks. Biometric systems have readily embraced cryptography to encrypt the data extracted from the scanning of anatomical features. Significant amounts of research have also gone into the integration of biometrics with steganography to add a layer to the defence-in-depth security model, and this has the potential to augment both access control parameters and the secure transmission of sensitive biometric data. However, despite these efforts, the amalgamation of biometric and steganographic methods has failed to transition from the research lab into real-world applications. In light of this review of both academic and industry literature, we suggest that future research should focus on identifying an acceptable level steganographic embedding for biometric applications, securing exchange of steganography keys, identifying and address legal implications, and developing industry standards

    An image steganography using improved hyper-chaotic Henon map and fractal Tromino

    Get PDF
    Steganography is a vital security approach that hides any secret content within ordinary data, such as multimedia. First, the cover image is converted into a wavelet environment using the integer wavelet transform (IWT), which protects the cover images from false mistakes. The grey wolf optimizer (GWO) is used to choose the pixel’s image that would be utilized to insert the hidden image in the cover image. GWO effectively selects pixels by calculating entropy, pixel intensity, and fitness function using the cover images. Moreover, the secret image was encrypted by utilizing a proposed hyper-chaotic improved Henon map and fractal Tromino. The suggested method increases computational security and efficiency with increased embedding capacity. Following the embedding algorithm of the secret image and the alteration of the cover image, the least significant bit (LSB) is utilized to locate the tempered region and to provide self-recovery characteristics in the digital image. According to the findings, the proposed technique provides a more secure transmission network with lower complexity in terms of peak signal-to-noise ratio (PSNR), normalized cross correlation (NCC), structural similarity index (SSIM), entropy and mean square error (MSE). As compared to the current approaches, the proposed method performed better in terms of PSNR 70.58% Db and SSIM 0.999 respectively

    Efficiency of LSB steganography on medical information

    Get PDF
    The development of the medical field had led to the transformation of communication from paper information into the digital form. Medical information security had become a great concern as the medical field is moving towards the digital world and hence patient information, disease diagnosis and so on are all being stored in the digital image. Therefore, to improve the medical information security, securing of patient information and the increasing requirements for communication to be transferred between patients, client, medical practitioners, and sponsors is essential to be secured. The core aim of this research is to make available a complete knowledge about the research trends on LSB Steganography Technique, which are applied to securing medical information such as text, image, audio, video and graphics and also discuss the efficiency of the LSB technique. The survey findings show that LSB steganography technique is efficient in securing medical information from intruder

    Review on Common Steganography Techniques

    Get PDF
    تحرص الجهات المختلفة على الحفاظ على سرية معلوماتها وحمايتها من الأطراف المتنافسة أو المعادية التي حرصت أيضًا على الوصول إلى تلك المعلومات بكافة الوسائل المتاحة. بما أن تشفير المعلومات ينكشف لأنه ينتج نصوصًا غير مفهومة تثير الشك، يميل البعض إلى العمل بطريقة تزيل الشكوك عن طريق إخفاء المعلومات في وسيط مثل النص أو الصورة بحيث يبدو ما يتم إرساله وتداوله طبيعيًا وخاليًا من العلامات أو رموز غير مفهومة كما لو لم يتم تحميلها بأي معلومات إضافية. هذا البحث يقدم مراجعة للتقنيات المستخدمة لإخفاء البيانات في الصور باعتبارها واحدة من أكثر تقنيات الإخفاء شيوعًا.Various authorities are keen to preserve the confidentiality of their information and protect it from competing or hostile parties who were also keen to access that information by all available means. Since the encryption of information is exposed as it produces incomprehensible texts that arouse suspicion, some tend to work in a way that removes suspicions by hiding the information in a medium like text or picture so that what is sent and circulated appears natural and free of signs or incomprehensible symbols as if not loaded with any additional information. This paper introduces a review the techniques used to hide data in images as one of the most common concealment techniques
    corecore