9,765 research outputs found

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    New intelligent network approach for monitoring physiological parameters : the case of Benin

    Get PDF
    Benin health system is facing many challenges as: (i) affordable high-quality health care to a growing population providing need, (ii) patients’ hospitalization time reduction, (iii) and presence time of the nursing staff optimization. Such challenges can be solved by remote monitoring of patients. To achieve this, five steps were followed. 1) Identification of the Wireless Body Area Network (WBAN) systems’ characteristics and the patient physiological parameters’ monitoring. 2) The national Integrated Patient Monitoring Network (RIMP) architecture modeling in a cloud of Technocenters. 3) Cross-analysis between the characteristics and the functional requirements identified. 4) Each Technocenter’s functionality simulation through: a) the design approach choice inspired by the life cycle of V systems; b) functional modeling through SysML Language; c) the communication technology and different architectures of sensor networks choice studying. 5) An estimate of the material resources of the national RIMP according to physiological parameters. A National Integrated Network for Patient Monitoring (RNIMP) remotely, ambulatory or not, was designed for Beninese health system. The implementation of the RNIMP will contribute to improve patients’ care in Benin. The proposed network is supported by a repository that can be used for its implementation, monitoring and evaluation. It is a table of 36 characteristic elements each of which must satisfy 5 requirements relating to: medical application, design factors, safety, performance indicators and materiovigilance

    Design and implementation of a federated health record server

    Get PDF
    This paper describes the practical implementation of a federated health record serverbased on a generic and comprehensive public domain architecture and deployed in alive clinical setting.The authors, working at the Centre for Health Informatics and MultiprofessionalEducation (University College London), have built up over a decade of experiencewithin Europe on the requirements and information models that are needed to underpincomprehensive multi-professional electronic health records. This work has involvedcollaboration with a wide range of healthcare and informatics organisations and partnersin the healthcare computing industry across Europe though the EU Health Telematicsprojects GEHR, Synapses, EHCR-SupA, SynEx and Medicate. The resultingarchitecture models have influenced recent European standards in this area, such asCEN TC/251 ENV 13606. UCL has now designed and built a federated health recordserver based on these models which is now running in the Department ofCardiovascular Medicine at the Whittington Hospital in north London. A new EC FifthFramework project, 6WINIT, is enabling new and innovative IPv6 and wirelesstechnology solutions to be added to this work.The north London clinical demonstrator site has provided the solid basis from which toestablish "proof of concept" verification of the design approach, and a valuableopportunity to install, test and evaluate the results of the component engineeringundertaken during the EC funded projects

    A systematic literature review of cloud computing in eHealth

    Full text link
    Cloud computing in eHealth is an emerging area for only few years. There needs to identify the state of the art and pinpoint challenges and possible directions for researchers and applications developers. Based on this need, we have conducted a systematic review of cloud computing in eHealth. We searched ACM Digital Library, IEEE Xplore, Inspec, ISI Web of Science and Springer as well as relevant open-access journals for relevant articles. A total of 237 studies were first searched, of which 44 papers met the Include Criteria. The studies identified three types of studied areas about cloud computing in eHealth, namely (1) cloud-based eHealth framework design (n=13); (2) applications of cloud computing (n=17); and (3) security or privacy control mechanisms of healthcare data in the cloud (n=14). Most of the studies in the review were about designs and concept-proof. Only very few studies have evaluated their research in the real world, which may indicate that the application of cloud computing in eHealth is still very immature. However, our presented review could pinpoint that a hybrid cloud platform with mixed access control and security protection mechanisms will be a main research area for developing citizen centred home-based healthcare applications

    Reporting an Experience on Design and Implementation of e-Health Systems on Azure Cloud

    Full text link
    Electronic Health (e-Health) technology has brought the world with significant transformation from traditional paper-based medical practice to Information and Communication Technologies (ICT)-based systems for automatic management (storage, processing, and archiving) of information. Traditionally e-Health systems have been designed to operate within stovepipes on dedicated networks, physical computers, and locally managed software platforms that make it susceptible to many serious limitations including: 1) lack of on-demand scalability during critical situations; 2) high administrative overheads and costs; and 3) in-efficient resource utilization and energy consumption due to lack of automation. In this paper, we present an approach to migrate the ICT systems in the e-Health sector from traditional in-house Client/Server (C/S) architecture to the virtualised cloud computing environment. To this end, we developed two cloud-based e-Health applications (Medical Practice Management System and Telemedicine Practice System) for demonstrating how cloud services can be leveraged for developing and deploying such applications. The Windows Azure cloud computing platform is selected as an example public cloud platform for our study. We conducted several performance evaluation experiments to understand the Quality Service (QoS) tradeoffs of our applications under variable workload on Azure.Comment: Submitted to third IEEE International Conference on Cloud and Green Computing (CGC 2013
    • …
    corecore