900 research outputs found

    Options for Securing RTP Sessions

    Get PDF
    The Real-time Transport Protocol (RTP) is used in a large number of different application domains and environments. This heterogeneity implies that different security mechanisms are needed to provide services such as confidentiality, integrity, and source authentication of RTP and RTP Control Protocol (RTCP) packets suitable for the various environments. The range of solutions makes it difficult for RTP-based application developers to pick the most suitable mechanism. This document provides an overview of a number of security solutions for RTP and gives guidance for developers on how to choose the appropriate security mechanism

    Options for Securing RTP Sessions

    Get PDF
    The Real-time Transport Protocol (RTP) is used in a large number of different application domains and environments. This heterogeneity implies that different security mechanisms are needed to provide services such as confidentiality, integrity, and source authentication of RTP and RTP Control Protocol (RTCP) packets suitable for the various environments. The range of solutions makes it difficult for RTP-based application developers to pick the most suitable mechanism. This document provides an overview of a number of security solutions for RTP and gives guidance for developers on how to choose the appropriate security mechanism

    Policy issues in interconnecting networks

    Get PDF
    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented

    Security in Mobile Networks: Communication and Localization

    Get PDF
    Nowadays the mobile networks are everywhere. The world is becoming more dependent on wireless and mobile services, but the rapid growth of these technologies usually underestimates security aspects. As wireless and mobile services grow, weaknesses in network infrastructures become clearer. One of the problems is privacy. Wireless technologies can reduce costs, increase efficiencies, and make important information more readily and widely available. But, there are also risks. Without appropriate safeguards, these data can be read and modified by unauthorized users. There are many solutions, less and more effective, to protect the data from unauthorized users. But, a specific application could distinguish more data flows between authorized users. Protect the privacy of these information between subsets of users is not a trivial problem. Another problem is the reliability of the wireless service. Multi-vehicle systems composed of Autonomous Guided Vehicles (AGVs) are largely used for industrial transportation in manufacturing and logistics systems. These vehicles use a mobile wireless network to exchange information in order to coordinate their tasks and movements. The reliable dissemination of these information is a crucial operation, because the AGVs may achieve an inconsistent view of the system leading to the failure of the coordination task. This has clear safety implications. Going more in deep, even if the communication are confidential and reliable, anyway the positioning information could be corrupted. Usually, vehicles get the positioning information through a secondary wireless network system such as GPS. Nevertheless, the widespread civil GPS is extremely fragile in adversarial scenarios. An insecure distance or position estimation could produce security problems such as unauthorized accesses, denial of service, thefts, integrity disruption with possible safety implications and intentional disasters. In this dissertation, we face these three problems, proposing an original solution for each one

    Options for Securing RTP Sessions

    Full text link

    End-to-end security in active networks

    Get PDF
    Active network solutions have been proposed to many of the problems caused by the increasing heterogeneity of the Internet. These ystems allow nodes within the network to process data passing through in several ways. Allowing code from various sources to run on routers introduces numerous security concerns that have been addressed by research into safe languages, restricted execution environments, and other related areas. But little attention has been paid to an even more critical question: the effect on end-to-end security of active flow manipulation. This thesis first examines the threat model implicit in active networks. It develops a framework of security protocols in use at various layers of the networking stack, and their utility to multimedia transport and flow processing, and asks if it is reasonable to give active routers access to the plaintext of these flows. After considering the various security problem introduced, such as vulnerability to attacks on intermediaries or coercion, it concludes not. We then ask if active network systems can be built that maintain end-to-end security without seriously degrading the functionality they provide. We describe the design and analysis of three such protocols: a distributed packet filtering system that can be used to adjust multimedia bandwidth requirements and defend against denial-of-service attacks; an efficient composition of link and transport-layer reliability mechanisms that increases the performance of TCP over lossy wireless links; and a distributed watermarking servicethat can efficiently deliver media flows marked with the identity of their recipients. In all three cases, similar functionality is provided to designs that do not maintain end-to-end security. Finally, we reconsider traditional end-to-end arguments in both networking and security, and show that they have continuing importance for Internet design. Our watermarking work adds the concept of splitting trust throughout a network to that model; we suggest further applications of this idea

    A Rapid Review of Internet Mediated Research Methods with People with Dementia: Practical, Technical and Ethical Considerations

    Get PDF
    Doing research with People with Dementia (PwD) can be challenging given that disease symptoms of anxiety, forgetfulness, and fluctuating mental capacity can make recruitment and data collection difficult. Once COVID-19 made face-to-face data collection impractical, using internet-based methods became an alternative option to continue with research. However, data collection with PwD over the internet requires strategies to observe, support, and enable them to engage with research, especially with qualitative approaches. Nine articles were selected via a decade rapid scoping review (undertaken March-June 2020) to identify qualitative online methods used with PwD and associated challenges. Methods used were online interviews, clinical assessment/telemedicine, and textual analysis from blogs, forum posts, and Tweets created by PwD. Practical challenges identified: the researchers’ limited ability to manage the physical and social environment. Technical challenges identified: the need for a high degree of technical support for participants prior and during data collection. Ethical challenges identified, negotiating confidentiality, obtaining valid informed consent, and ensuring data security. Implicit findings found related to how researchers perceived and treated online data retrieved from the internet and how the challenges mentioned in the included articles did not link to dementia symptoms
    corecore