13,290 research outputs found

    S-Mbank: Secure Mobile Banking Authentication Scheme Using Signcryption, Pair Based Text Authentication, and Contactless Smartcard

    Get PDF
    Nowadays, mobile banking becomes a popular tool which consumers can conduct financial transactions such as shopping, monitoring accounts balance, transferring funds and other payments. Consumers dependency on mobile needs, make people take a little bit more interest in mobile banking. The use of the one-time password which is sent to the user mobile phone by short message service (SMS) is a vulnerability which we want to solve with proposing a new scheme called S-Mbank. We replace the authentication using the one-time password with the contactless smart card to prevent attackers to use the unencrypted message which is sent to the user's mobile phone. Moreover, it deals vulnerability of spoofer to send an SMS pretending as a bank's server. The contactless smart card is proposed because of its flexibility and security which easier to bring in our wallet than the common passcode generators. The replacement of SMS-based authentication with contactless smart card removes the vulnerability of unauthorized users to act as a legitimate user to exploit the mobile banking user's account. Besides that, we use public-private key pair and PIN to provide two factors authentication and mutual authentication. We use signcryption scheme to provide the efficiency of the computation. Pair based text authentication is also proposed for the login process as a solution to shoulder-surfing attack. We use Scyther tool to analyze the security of authentication protocol in S-Mbank scheme. From the proposed scheme, we are able to provide more security protection for mobile banking service.Comment: 6 page

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    A New Biometric Template Protection using Random Orthonormal Projection and Fuzzy Commitment

    Full text link
    Biometric template protection is one of most essential parts in putting a biometric-based authentication system into practice. There have been many researches proposing different solutions to secure biometric templates of users. They can be categorized into two approaches: feature transformation and biometric cryptosystem. However, no one single template protection approach can satisfy all the requirements of a secure biometric-based authentication system. In this work, we will propose a novel hybrid biometric template protection which takes benefits of both approaches while preventing their limitations. The experiments demonstrate that the performance of the system can be maintained with the support of a new random orthonormal project technique, which reduces the computational complexity while preserving the accuracy. Meanwhile, the security of biometric templates is guaranteed by employing fuzzy commitment protocol.Comment: 11 pages, 6 figures, accepted for IMCOM 201

    The Horcrux Protocol: A Method for Decentralized Biometric-based Self-sovereign Identity

    Full text link
    Most user authentication methods and identity proving systems rely on a centralized database. Such information storage presents a single point of compromise from a security perspective. If this system is compromised it poses a direct threat to users' digital identities. This paper proposes a decentralized authentication method, called the Horcrux protocol, in which there is no such single point of compromise. The protocol relies on decentralized identifiers (DIDs) under development by the W3C Verifiable Claims Community Group and the concept of self-sovereign identity. To accomplish this, we propose specification and implementation of a decentralized biometric credential storage option via blockchains using DIDs and DID documents within the IEEE 2410-2017 Biometric Open Protocol Standard (BOPS)
    • …
    corecore