3,182 research outputs found

    In Vivo Evaluation of the Secure Opportunistic Schemes Middleware using a Delay Tolerant Social Network

    Full text link
    Over the past decade, online social networks (OSNs) such as Twitter and Facebook have thrived and experienced rapid growth to over 1 billion users. A major evolution would be to leverage the characteristics of OSNs to evaluate the effectiveness of the many routing schemes developed by the research community in real-world scenarios. In this paper, we showcase the Secure Opportunistic Schemes (SOS) middleware which allows different routing schemes to be easily implemented relieving the burden of security and connection establishment. The feasibility of creating a delay tolerant social network is demonstrated by using SOS to power AlleyOop Social, a secure delay tolerant networking research platform that serves as a real-life mobile social networking application for iOS devices. SOS and AlleyOop Social allow users to interact, publish messages, and discover others that share common interests in an intermittent network using Bluetooth, peer-to-peer WiFi, and infrastructure WiFi.Comment: 6 pages, 4 figures, accepted in ICDCS 2017. arXiv admin note: text overlap with arXiv:1702.0565

    Opportunistic mobile social networks: architecture, privacy, security issues and future directions

    Get PDF
    Mobile Social Networks and its related applications have made a very great impact in the society. Many new technologies related to mobile social networking are booming rapidly now-a-days and yet to boom. One such upcoming technology is Opportunistic Mobile Social Networking. This technology allows mobile users to communicate and exchange data with each other without the use of Internet. This paper is about Opportunistic Mobile Social Networks, its architecture, issues and some future research directions. The architecture and issues of Opportunistic Mobile Social Networks are compared with that of traditional Mobile Social Networks. The main contribution of this paper is regarding privacy and security issues in Opportunistic Mobile Social Networks. Finally, some future research directions in Opportunistic Mobile Social Networks have been elaborated regarding the data's privacy and security

    Secured Scheme for Privacy Preserving and Node Authentication Mechanism for a Special Mobile Ad hoc Network

    Get PDF
    Opportunistic networks are a special type of Mobile Ad hoc network which are wirelessly interlinked nodes with the absence of end to end connectivity. All nodes in an opportunistic network are free to move in an environment. Due to the high degree of mobility of nodes, opportunistic networks differ significantly from the existing traditional networks and it works on store, carry &forward mechanism in which, each node has a communication range. Within its proximity, if any node comes, it can send and receive messages. In an opportunistic network, there is no proper infrastructure available for communication and node have limited storage and computational capabilities. The major problem being faced in an opportunistic network is the identification of normal and malicious nodes because due to the open nature of the opportunistic network, malicious nodes also can join the network and perform some malicious activities like Sybil attack. We propose a remedy to address the authentication and privacy issue that can arise in an opportunistic network. According to the findings of the simulation, the proposed research work satisfies the authentication and privacy criteria of an opportunistic network

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
    • …
    corecore