11,025 research outputs found

    An Authentication Protocol for Future Sensor Networks

    Full text link
    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis and simulated the SMSN and previously proposed schemes in an automated protocol verifier tool. Finally, we compared the computational complexity and communication cost against well-known authentication protocols.Comment: This article is accepted for the publication in "Sensors" journal. 29 pages, 15 figure

    A Protected Single Sign-On Technique Using 2D Password in Distributed Computer Networks

    Get PDF
    Single Sign-On (SSO) is a new authentication mechanism that enables a legal user with a single credential to be authenticated by multiple service providers in a distributed computer network. Recently, a new SSO scheme providing well-organized security argument failed to meet credential privacy and soundness of authentication. The main goal of this project is to provide security using Single Sign-On scheme meeting at least three basic security requirements, i.e., unforgetability, credential privacy, and soundness. User identification is an important access control mechanism for client–server networking architectures. The concept of Single Sign-On can allow legal users to use the unitary token to access different service providers in distributed computer networks. To overcome few drawbacks like not preserving user anonymity when possible attacks occur and extensive overhead costs of time-synchronized mechanisms, we propose a secure Single Sign-On mechanism that is efficient, secure, and suitable for mobile devices in distributed computer networks. In a real-life application, the mobile user can use the mobile device, e.g., a cell phone, with the unitary token to access multiservice, such as downloading music; receive/reply electronic mails etc. Our scheme is based on one-way hash functions and random nonce to solve the weaknesses described above and to decrease the overhead of the system. The proposed scheme is more secure with two types of password scheme namely, Text password and Graphical Password referred as 2D password in distributed computer networks that yields a more efficient system that consumes lower energy. The proposed system has less communication overhead. It eliminates the need for time synchronization and there is no need of holding multiple passwords for different services

    Privacy-aware Secure Region-based Handover for Small Cell Networks in 5G-enabled Mobile Communication

    Get PDF
    The 5G mobile communication network provides seamless communications between users and service providers and promises to achieve several stringent requirements, such as seamless mobility and massive connectivity. Although 5G can offer numerous benefits, security and privacy issues still need to be addressed. For example, the inclusion of small cell networks (SCN) into 5G brings the network closer to the connected users, providing a better quality of services (QoS), resulting in a significant increase in the number of Handover procedures (HO), which will affect the security, latency and efficiency of the network. It is then crucial to design a scheme that supports seamless handovers through secure authentication to avoid the consequences of SCN. To address this issue, this article proposes a secure region-based handover scheme with user anonymity and an efficient revocation mechanism that supports seamless connectivity for SCNs in 5G. In this context, we introduce three privacy-preserving authentication protocols, i.e., initial authentication protocol, intra-region handover protocol and inter-region handover protocol, for dealing with three communication scenarios. To the best of our knowledge, this is the first paper to consider the privacy and security in both the intra-region and inter-region handover scenarios in 5G communication. Detailed security and performance analysis of our proposed scheme is presented to show that it is resilient against many security threats, is cost-effective in computation and provides an efficient solution for the 5G enabled mobile communication
    • …
    corecore