588 research outputs found

    An Initial Value Technique using Exponentially Fitted Non Standard Finite Difference Method for Singularly Perturbed Differential-Difference Equations

    Get PDF
    In this paper, an exponentially fitted non standard finite difference method is proposed to solve singularly perturbed differential-difference equations with boundary layer on left and right sides of the interval. In this method, the original second order differential difference equation is replaced by an asymptotically equivalent singularly perturbed problem and in turn the problem is replaced by an asymptotically equivalent first order problem. This initial value problem is solve by using exponential fitting with non standard finite differences. To validate the applicability of the method, several model examples have been solved by taking different values for the delay parameter δ , advanced parameter η and the perturbation parameter ε . Comparison of the results is shown to justify the method. The effect of the small shifts on the boundary layer solutions has been investigated and presented in figures. The convergence of the scheme has also been investigated

    An exponentially fitted finite difference scheme for a class of singularly perturbed delay differential equations with large delays

    Get PDF
    AbstractThis paper deals with singularly perturbed boundary value problem for a linear second order delay differential equation. It is known that the classical numerical methods are not satisfactory when applied to solve singularly perturbed problems in delay differential equations. In this paper we present an exponentially fitted finite difference scheme to overcome the drawbacks of the corresponding classical counter parts. The stability of the scheme is investigated. The proposed scheme is analyzed for convergence. Several linear singularly perturbed delay differential equations have been solved and the numerical results are presented to support the theory

    Mixed finite difference method for singularly perturbed differential difference equations with mixed shifts via domain decomposition

    Get PDF
    AbstractIn this paper, a mixed finite difference method is proposed to solve singularly perturbed differential difference equations with mixed shifts, solutions of which exhibit boundary layer behaviour at the left end of the interval using domain decomposition. A terminal boundary point is introduced into the domain, to decompose it into inner and outer regions. The original problem is reduced to an asymptotically equivalent singular perturbation problem and with the terminal point the singular perturbation problem is treated as inner region and outer region problems separately. The outer region and the modified inner region problems are solved by mixed finite difference method. The method is repeated for various choices of the terminal point. To validate the computational efficiency of the method model examples have been solved for different values of perturbation, delay and advanced parameters. Convergence of the proposed scheme has also been investigated

    Fitted non-polynomial spline method for singularly perturbed differential difference equations with integral boundary condition

    Get PDF
    The aim of this paper is to present fitted non-polynomial spline method for singularly perturbed differential-difference equations with integral boundary condition. The stability and uniform convergence of the proposed method are proved. To validate the applicability of the scheme, two model problems are considered for numerical experimentation and solved for different values of the perturbation parameter, ε and mesh size, h. The numerical results are tabulated in terms of maximum absolute errors and rate of convergence and it is observed that the present method is more accurate and uniformly convergent for h ≥ ε where the classical numerical methods fails to give good result and it also improves the results of the methods existing in the literature

    A seventh order numerical method for singular perturbed differential-difference equations with negative shift

    Get PDF
    In this paper, a seventh order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been used for delay. Such problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, we first use Taylor approximation to tackle terms containing small shifts which converts into a singularly perturbed boundary value problem. This two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a seventh order compact difference scheme is employed for the first order system and solved by using the boundary conditions. Several numerical examples are solved and compared with exact solution. We also present least square errors, maximum errors and observed that the present method approximates the exact solution very well

    A hybrid approximation scheme for 1-D singularly perturbed parabolic convection-diffusion problems

    Get PDF
    Our study is concerned with a hybrid spectral collocation approach to solving singularly perturbed 1-D parabolic convection-diffusion problems. In this approach, discretization in time is carried out with the help of Taylor series expansions before the spectral based on novel special polynomials is applied to the spatial operator in the time step. A detailed error analysis of the presented technique is conducted with regard to the space variable. The advantages of this attempt are presented through comparison of our results in the model problems obtained by this technique and other existing schemes

    Hybrid Algorithm for Singularly Perturbed Delay Parabolic Partial Differential Equations

    Get PDF
    This study aims at constructing a numerical scheme for solving singularly perturbed parabolic delay differential equations. Taylor’s series expansion is applied to approximate the shift term. The obtained result is approximated by using the implicit Euler method in the temporal discretization on a uniform step size with the hybrid numerical scheme consisting of the midpoint upwind method in the outer layer region and the cubic spline method in the inner layer region on a piecewise uniform Shishkin mesh in the spatial discretization. The constructed scheme is an ε−uniformly convergent accuracy of order one. Some test examples are considered to testify the theoretical investigations

    A hybrid approximation scheme for 1-D singularly perturbed parabolic convection-diffusion problems

    Get PDF
    Our study is concerned with a hybrid spectral collocation approach to solving singularly perturbed 1-D parabolic convection-diffusion problems. In this approach, discretization in time is carried out with the help of Taylor series expansions before the spectral based on novel special polynomials is applied to the spatial operator in the time step. A detailed error analysis of the presented technique is conducted with regard to the space variable. The advantages of this attempt are presented through comparison of our results in the model problems obtained by this technique and other existing schemes

    A numerical scheme for singularly perturbed delay differential equations of convection-diffusion type on an adaptive grid

    Get PDF
    In this paper, an adaptive mesh strategy is presented for solving singularly perturbed delay differential equation of convection-diffusion type using second order central finite difference scheme. Layer adaptive meshes are generated via an entropy production operator. The details of the location and width of the layer is not required in the proposed method unlike the popular layer adaptive meshes mainly by Bakhvalov and Shishkin. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method
    corecore