6,711 research outputs found

    Reconstructing vectorised photographic images

    Get PDF
    We address the problem of representing captured images in the continuous mathematical space more usually associated with certain forms of drawn ('vector') images. Such an image is resolution-independent so can be used as a master for varying resolution-specific formats. We briefly describe the main features of a vectorising codec for photographic images, whose significance is that drawing programs can access images and image components as first-class vector objects. This paper focuses on the problem of rendering from the isochromic contour form of a vectorised image and demonstrates a new fill algorithm which could also be used in drawing generally. The fill method is described in terms of level set diffusion equations for clarity. Finally we show that image warping is both simplified and enhanced in this form and that we can demonstrate real histogram equalisation with genuinely rectangular histograms

    Sobolev gradients and image interpolation

    Full text link
    We present here a new image inpainting algorithm based on the Sobolev gradient method in conjunction with the Navier-Stokes model. The original model of Bertalmio et al is reformulated as a variational principle based on the minimization of a well chosen functional by a steepest descent method. This provides an alternative of the direct solving of a high-order partial differential equation and, consequently, allows to avoid complicated numerical schemes (min-mod limiters or anisotropic diffusion). We theoretically analyze our algorithm in an infinite dimensional setting using an evolution equation and obtain global existence and uniqueness results as well as the existence of an ω\omega-limit. Using a finite difference implementation, we demonstrate using various examples that the Sobolev gradient flow, due to its smoothing and preconditioning properties, is an effective tool for use in the image inpainting problem
    • …
    corecore