4,714 research outputs found

    Overviews of Optimization Techniques for Geometric Estimation

    Get PDF
    We summarize techniques for optimal geometric estimation from noisy observations for computer vision applications. We first discuss the interpretation of optimality and point out that geometric estimation is different from the standard statistical estimation. We also describe our noise modeling and a theoretical accuracy limit called the KCR lower bound. Then, we formulate estimation techniques based on minimization of a given cost function: least squares (LS), maximum likelihood (ML), which includes reprojection error minimization as a special case, and Sampson error minimization. We describe bundle adjustment and the FNS scheme for numerically solving them and the hyperaccurate correction that improves the accuracy of ML. Next, we formulate estimation techniques not based on minimization of any cost function: iterative reweight, renormalization, and hyper-renormalization. Finally, we show numerical examples to demonstrate that hyper-renormalization has higher accuracy than ML, which has widely been regarded as the most accurate method of all. We conclude that hyper-renormalization is robust to noise and currently is the best method

    An Inequality Constrained SL/QP Method for Minimizing the Spectral Abscissa

    Full text link
    We consider a problem in eigenvalue optimization, in particular finding a local minimizer of the spectral abscissa - the value of a parameter that results in the smallest value of the largest real part of the spectrum of a matrix system. This is an important problem for the stabilization of control systems. Many systems require the spectra to lie in the left half plane in order for them to be stable. The optimization problem, however, is difficult to solve because the underlying objective function is nonconvex, nonsmooth, and non-Lipschitz. In addition, local minima tend to correspond to points of non-differentiability and locally non-Lipschitz behavior. We present a sequential linear and quadratic programming algorithm that solves a series of linear or quadratic subproblems formed by linearizing the surfaces corresponding to the largest eigenvalues. We present numerical results comparing the algorithms to the state of the art
    • ā€¦
    corecore