1,314 research outputs found

    A sub-mW IoT-endnode for always-on visual monitoring and smart triggering

    Full text link
    This work presents a fully-programmable Internet of Things (IoT) visual sensing node that targets sub-mW power consumption in always-on monitoring scenarios. The system features a spatial-contrast 128x64128\mathrm{x}64 binary pixel imager with focal-plane processing. The sensor, when working at its lowest power mode (10μW10\mu W at 10 fps), provides as output the number of changed pixels. Based on this information, a dedicated camera interface, implemented on a low-power FPGA, wakes up an ultra-low-power parallel processing unit to extract context-aware visual information. We evaluate the smart sensor on three always-on visual triggering application scenarios. Triggering accuracy comparable to RGB image sensors is achieved at nominal lighting conditions, while consuming an average power between 193μW193\mu W and 277μW277\mu W, depending on context activity. The digital sub-system is extremely flexible, thanks to a fully-programmable digital signal processing engine, but still achieves 19x lower power consumption compared to MCU-based cameras with significantly lower on-board computing capabilities.Comment: 11 pages, 9 figures, submitteted to IEEE IoT Journa

    Custom Integrated Circuits

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1 and reports on eleven research projects.IBM CorporationMIT School of EngineeringNational Science Foundation Grant MIP 94-23221Defense Advanced Research Projects Agency/U.S. Army Intelligence Center Contract DABT63-94-C-0053Mitsubishi CorporationNational Science Foundation Young Investigator Award Fellowship MIP 92-58376Joint Industry Program on Offshore Structure AnalysisAnalog DevicesDefense Advanced Research Projects AgencyCadence Design SystemsMAFET ConsortiumConsortium for Superconducting ElectronicsNational Defense Science and Engineering Graduate FellowshipDigital Equipment CorporationMIT Lincoln LaboratorySemiconductor Research CorporationMultiuniversity Research IntiativeNational Science Foundatio

    Smart cmos image sensor for 3d measurement

    Get PDF
    3D measurements are concerned with extracting visual information from the geometry of visible surfaces and interpreting the 3D coordinate data thus obtained, to detect or track the position or reconstruct the profile of an object, often in real time. These systems necessitate image sensors with high accuracy of position estimation and high frame rate of data processing for handling large volumes of data. A standard imager cannot address the requirements of fast image acquisition and processing, which are the two figures of merit for 3D measurements. Hence, dedicated VLSI imager architectures are indispensable for designing these high performance sensors. CMOS imaging technology provides potential to integrate image processing algorithms on the focal plane of the device, resulting in smart image sensors, capable of achieving better processing features in handling massive image data. The objective of this thesis is to present a new architecture of smart CMOS image sensor for real time 3D measurement using the sheet-beam projection methods based on active triangulation. Proposing the vision sensor as an ensemble of linear sensor arrays, all working in parallel and processing the entire image in slices, the complexity of the image-processing task shifts from O (N 2 ) to O (N). Inherent also in the design is the high level of parallelism to achieve massive parallel processing at high frame rate, required in 3D computation problems. This work demonstrates a prototype of the smart linear sensor incorporating full testability features to test and debug both at device and system levels. The salient features of this work are the asynchronous position to pulse stream conversion, multiple images binarization, high parallelism and modular architecture resulting in frame rate and sub-pixel resolution suitable for real time 3D measurements

    Solid State Television Camera (CID)

    Get PDF
    The design, development and test are described of a charge injection device (CID) camera using a 244x248 element array. A number of video signal processing functions are included which maximize the output video dynamic range while retaining the inherently good resolution response of the CID. Some of the unique features of the camera are: low light level performance, high S/N ratio, antiblooming, geometric distortion, sequential scanning and AGC

    The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing

    Full text link
    The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54x54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. This article provides reference documentation for users of the SWAP image data.Comment: 26 pages, 9 figures, 1 movi

    CMOS-3D smart imager architectures for feature detection

    Get PDF
    This paper reports a multi-layered smart image sensor architecture for feature extraction based on detection of interest points. The architecture is conceived for 3-D integrated circuit technologies consisting of two layers (tiers) plus memory. The top tier includes sensing and processing circuitry aimed to perform Gaussian filtering and generate Gaussian pyramids in fully concurrent way. The circuitry in this tier operates in mixed-signal domain. It embeds in-pixel correlated double sampling, a switched-capacitor network for Gaussian pyramid generation, analog memories and a comparator for in-pixel analog-to-digital conversion. This tier can be further split into two for improved resolution; one containing the sensors and another containing a capacitor per sensor plus the mixed-signal processing circuitry. Regarding the bottom tier, it embeds digital circuitry entitled for the calculation of Harris, Hessian, and difference-of-Gaussian detectors. The overall system can hence be configured by the user to detect interest points by using the algorithm out of these three better suited to practical applications. The paper describes the different kind of algorithms featured and the circuitry employed at top and bottom tiers. The Gaussian pyramid is implemented with a switched-capacitor network in less than 50 μs, outperforming more conventional solutions.Xunta de Galicia 10PXIB206037PRMinisterio de Ciencia e Innovación TEC2009-12686, IPT-2011-1625-430000Office of Naval Research N00014111031

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc

    Linear Current-Mode Active Pixel Sensor

    Get PDF
    A current mode CMOS active pixel sensor (APS) providing linear light-to-current conversion with inherently low fixed pattern noise (FPN) is presented. The pixel features adjustable-gain current output using a pMOS readout transistor in the linear region of operation. This paper discusses the pixel’s design and operation, and presents an analysis of the pixel’s temporal noise and FPN. Results for zero and first-order pixel mismatch are presented. The pixel was implemented in a both a 3.3 V 0.35 µm and a 1.8 V 0.18 µm CMOS process. The 0.35 µm process pixel had an uncorrected FPN of 1.4%/0.7% with/without column readout mismatch. The 0.18 µm process pixel had 0.4% FPN after delta-reset sampling (DRS). The pixel size in both processes was 10 X 10 µm2, with fill factors of 26% and 66%, respectively
    corecore