1,098 research outputs found

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Sliding mode control of constrained nonlinear systems

    Get PDF
    This technical note introduces the design of sliding mode control algorithms for nonlinear systems in the presence of hard inequality constraints on both control and state variables. Relying on general results on minimum-time higher-order sliding mode for unconstrained systems, a general order control law is formulated to robustly steer the state to the origin, while satisfying all the imposed constraints. Results on minimum-time convergence to the sliding manifold, as well as on the maximization of the domain of attraction, are analytically proved for the first-order and second-order sliding mode cases. A general result is presented regarding the domain of attraction in the general order case, while numerical results on the estimation of the domain of attraction and on minimum-time convergence are discussed for the third-order case, following a procedure applicable to a sliding mode of any order

    Direct modeling techniques in the conceptual design stage in immersive environments for DfA&D

    Get PDF
    Due to the fast – growing competition of the mass – products markets, companies are looking for new technologies to maximize productivity and minimize time and costs. In the perspective of Computer Aided Process Planning (CAPP), companies want to optimize fixture design and assembly planning for different goals. To meet these demands, the designers' interest in Design for Assembly and Disassembly is growing considerably and is increasingly being integrated into the CAPP. The work described in this thesis aims to exploit immersive technologies to support the design of mating elements and assembly / disassembly, by developing a data exchange flow between the immersive environment and the modeling environment that provides the high – level modeling rules, both for modeling features and for assembly relationships. The main objective of the research is to develop the capability to model and execute simple coupling commands in a virtual environment by using fast direct modeling commands. With this tool the designer can model the coupling elements, position them and modify their layout. Thanks to the physical engine embedded in the scene editor software, it is possible to take into consideration physical laws such as gravity and collision between elements. A library of predefined assembly features has been developed through the use of an external modeling engine and put into communication with the immersive interaction environment. Subsequently, the research involved the study of immersive technologies for workforce development and training of workers. The research on immersive training involved industrial case studies, such as the projection of the disassembly sequence of an industrial product on a head mounted display, and less industrial case studies, such as the manual skills development of carpenters for AEC sectors and the surgeon training in the pre – operative planning in medical field

    Human-robot cooperation for robust surface treatment using non-conventional sliding mode control

    Full text link
    [EN] This work presents a human-robot closely collaborative solution to cooperatively perform surface treatment tasks such as polishing, grinding, deburring, etc. The method considers two force sensors attached to the manipulator end-effector and tool: one sensor is used to properly accomplish the surface treatment task, while the second one is used by the operator to guide the robot tool. The proposed scheme is based on task priority and adaptive non-conventional sliding mode control. The applicability of the proposed approach is substantiated by experimental results using a redundant 7R manipulator: the Sawyer cobot.This work was supported in part by the Spanish Government under the project DPI2017-87656-C2-1-R and the Generalitat Valenciana under Grants VALi + d APOSTD/2016/044 and APOSTD/2017/055.Solanes Galbis, JE.; Gracia Calandin, LI.; Muñoz-Benavent, P.; Valls Miro, J.; Girbés, V.; Tornero Montserrat, J. (2018). Human-robot cooperation for robust surface treatment using non-conventional sliding mode control. ISA Transactions. 80(1):528-541. https://doi.org/10.1016/j.isatra.2018.05.013S52854180

    Nonprehensile Dynamic Manipulation: A Survey

    Get PDF
    Nonprehensile dynamic manipulation can be reason- ably considered as the most complex manipulation task. It might be argued that such a task is still rather far from being fully solved and applied in robotics. This survey tries to collect the results reached so far by the research community about planning and control in the nonprehensile dynamic manipulation domain. A discussion about current open issues is addressed as well

    ZMP Support Areas for Multicontact Mobility Under Frictional Constraints

    Get PDF
    International audienceWe propose a method for checking and enforcing multi-contact stability based on the Zero-tilting Moment Point (ZMP). The key to our development is the generalization of ZMP support areas to take into account (a) frictional constraints and (b) multiple non-coplanar contacts. We introduce and investigate two kinds of ZMP support areas. First, we characterize and provide a fast geometric construction for the support area generated by valid contact forces, with no other constraint on the robot motion. We call this set the full support area. Next, we consider the control of humanoid robots using the Linear Pendulum Mode (LPM). We observe that the constraints stemming from the LPM induce a shrinking of the support area, even for walking on horizontal floors. We propose an algorithm to compute the new area, which we call pendular support area. We show that, in the LPM, having the ZMP in the pendular support area is a necessary and sufficient condition for contact stability. Based on these developments, we implement a whole-body controller and generate feasible multi-contact motions where an HRP-4 humanoid locomotes in challenging multi-contact scenarios
    corecore