217,951 research outputs found

    Certified dimension reduction in nonlinear Bayesian inverse problems

    Get PDF
    We propose a dimension reduction technique for Bayesian inverse problems with nonlinear forward operators, non-Gaussian priors, and non-Gaussian observation noise. The likelihood function is approximated by a ridge function, i.e., a map which depends non-trivially only on a few linear combinations of the parameters. We build this ridge approximation by minimizing an upper bound on the Kullback--Leibler divergence between the posterior distribution and its approximation. This bound, obtained via logarithmic Sobolev inequalities, allows one to certify the error of the posterior approximation. Computing the bound requires computing the second moment matrix of the gradient of the log-likelihood function. In practice, a sample-based approximation of the upper bound is then required. We provide an analysis that enables control of the posterior approximation error due to this sampling. Numerical and theoretical comparisons with existing methods illustrate the benefits of the proposed methodology

    A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet flow inverse problems

    Full text link
    We address the numerical solution of infinite-dimensional inverse problems in the framework of Bayesian inference. In the Part I companion to this paper (arXiv.org:1308.1313), we considered the linearized infinite-dimensional inverse problem. Here in Part II, we relax the linearization assumption and consider the fully nonlinear infinite-dimensional inverse problem using a Markov chain Monte Carlo (MCMC) sampling method. To address the challenges of sampling high-dimensional pdfs arising from Bayesian inverse problems governed by PDEs, we build on the stochastic Newton MCMC method. This method exploits problem structure by taking as a proposal density a local Gaussian approximation of the posterior pdf, whose construction is made tractable by invoking a low-rank approximation of its data misfit component of the Hessian. Here we introduce an approximation of the stochastic Newton proposal in which we compute the low-rank-based Hessian at just the MAP point, and then reuse this Hessian at each MCMC step. We compare the performance of the proposed method to the original stochastic Newton MCMC method and to an independence sampler. The comparison of the three methods is conducted on a synthetic ice sheet inverse problem. For this problem, the stochastic Newton MCMC method with a MAP-based Hessian converges at least as rapidly as the original stochastic Newton MCMC method, but is far cheaper since it avoids recomputing the Hessian at each step. On the other hand, it is more expensive per sample than the independence sampler; however, its convergence is significantly more rapid, and thus overall it is much cheaper. Finally, we present extensive analysis and interpretation of the posterior distribution, and classify directions in parameter space based on the extent to which they are informed by the prior or the observations.Comment: 31 page

    Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems

    Get PDF
    One of the major challenges in the Bayesian solution of inverse problems governed by partial differential equations (PDEs) is the computational cost of repeatedly evaluating numerical PDE models, as required by Markov chain Monte Carlo (MCMC) methods for posterior sampling. This paper proposes a data-driven projection-based model reduction technique to reduce this computational cost. The proposed technique has two distinctive features. First, the model reduction strategy is tailored to inverse problems: the snapshots used to construct the reduced-order model are computed adaptively from the posterior distribution. Posterior exploration and model reduction are thus pursued simultaneously. Second, to avoid repeated evaluations of the full-scale numerical model as in a standard MCMC method, we couple the full-scale model and the reduced-order model together in the MCMC algorithm. This maintains accurate inference while reducing its overall computational cost. In numerical experiments considering steady-state flow in a porous medium, the data-driven reduced-order model achieves better accuracy than a reduced-order model constructed using the classical approach. It also improves posterior sampling efficiency by several orders of magnitude compared to a standard MCMC method
    corecore