28 research outputs found

    Managing data on the World Wide Web : state of the art survey of innovative tools and techniques

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 1995.Includes bibliographical references (p. 96-102).by Prasanth Duvvur.M.S

    Multiscale visualization approaches for Volunteered Geographic Information and Location-based Social Media

    Get PDF
    Today, “zoomable” maps are a state-of-the-art way to explore the world, available to anyone with Internet access. However, the process of creating this visualization has been rather loosely investigated and documented. Nevertheless, with an increasing amount of available data, interactive maps have become a more integral approach to visualizing and exploring big datasets and user-generated data. OpenStreetMap and online platforms such as Twitter and Flickr offer application programming interfaces (APIs) with geographic information. They are well-known examples of this visualization challenge and are often used as examples. In addition, an increasing number of public administrations collect open data and publish their data sets, which makes the task of visualization even more relevant. This dissertation deals with the visualization of user-generated geodata as a multiscale map. The basics of today’s multiscale maps—their history, technologies, and possibilities—are explored and abstracted. This work introduces two new multiscale-focused visualization approaches for point data from volunteered geographic information (VGI) and location-based social media (LBSM). One contribution of this effort is a visualization methodology for spatially referenced information in the form of point geometries, using nominally scaled data from social media such as Twitter or Flickr. Typical for this data is a high number of social media posts in different categories—a post on social media corresponds to a point in a specific category. Due to the sheer quantity and similar characteristics, the posts appear generic rather than unique. This type of dataset can be explored using the new method of micro diagrams to visualize the dataset on multiple scales and resolutions. The data is aggregated into small grid cells, and the numerical proportion is shown with small diagrams, which can visually merge into heterogenous areas through colors depicting a specific category. The diagram sizes allow the user to estimate the overall number of aggregated points in a grid cell. A different visualization approach is proposed for more unique points, considered points of interest (POI), based on the selection method. The goal is to identify more locally relevant points from the data set, considered more important compared to other points in the neighborhood, which are then compared by numerical attribute. The method, derived from topographic isolation and called discrete isolation, is the distance from one point to the next with a higher attribute value. By using this measure, the most essential points can be easily selected by choosing a minimum distance and producing a homogenous spatial of the selected points within the chosen dataset. The two newly developed approaches are applied to multiscale mapping by constructing example workflows that produce multiscale maps. The publicly available multiscale mapping workflows OpenMapTiles and OpenStreetMap Carto, using OpenStreetMap data, are systematically explored and analyzed. The result is a general workflow for multiscale map production and a short overview of the toolchain software. In particular, the generalization approaches in the example projects are discussed and these are classified into cartographic theories on the basis of literature. The workflow is demonstrated by building a raster tile service for the micro diagrams and a vector tile service for the discrete isolation, able to be used with just a web browser. In conclusion, these new approaches for point data using VGI and LBSM allow better qualitative visualization of geodata. While analyzing vast global datasets is challenging, exploring and analyzing hidden data patterns is fruitful. Creating this degree of visualization and producing maps on multiple scales is a complicated task. The workflows and tools provided in this thesis will make map production on a worldwide scale easier.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection visualization discussion .................................. 47 4 Selection of POIs for visualization 50 4.1 Approaches for point selection .......................................................... 50 4.2 Methods for point selection ................................................................ 51 4.2.1 Label grid approach .................................................................... 52 4.2.2 Functional importance approach .............................................. 53 4.2.3 Discrete isolation approach ....................................................... 54 4.3 Functional evaluation of selection methods .................................... 56 4.3.1 Runtime comparison .................................................................... 56 4.3.2 Use cases for discrete isolation ................................................ 57 4.4 Discussion of the selection approaches .......................................... 61 4.4.1 A critical view of the use cases ................................................. 61 4.4.2 Comparing the approaches ........................................................ 62 4.4.3 Conclusion ..................................................................................... 64 5 Creating multiscale maps 65 5.1 Examples of multiscale map production .......................................... 65 5.1.1 OpenStreetMap Infrastructure ................................................... 66 5.1.2 OpenStreetMap Carto ................................................................. 67 5.1.3 OpenMapTiles ............................................................................... 73 5.2 Methods of multiscale map production ............................................ 80 5.2.1 OpenStreetMap tools ................................................................... 80 5.2.2 Geoprocessing .............................................................................. 80 5.2.3 Database ........................................................................................ 80 5.2.4 Creating tiles ................................................................................. 82 5.2.5 Caching .......................................................................................... 82 5.2.6 Styling tiles .................................................................................... 82 5.2.7 Viewing tiles ................................................................................... 83 5.2.8 The stackless approach to tile creation ................................... 83 5.3 Example workflows for creating multiscale maps ........................... 84 5.3.1 Raster tiles: OGC services and micro diagrams .................... 84 5.3.2 Vector tiles: Slippy map and vector tiles ................................. 87 5.4 Discussion of approaches and workflows ....................................... 90 5.4.1 Map production as a rendering pipeline .................................. 90 5.4.2 Comparison of OpenStreetMap Carto and OpenMapTiles .. 92 5.4.3 Discussion of the implementations ........................................... 93 5.4.4 Generalization in map production workflows .......................... 95 5.4.5 Conclusions ................................................................................. 101 6 Discussion 103 6.1 Development for web mapping ........................................................ 103 6.1.1 The role of standards in map production .............................. 103 6.1.2 Technological development ..................................................... 103 6.2 New data, new mapping techniques? ............................................. 104 7 Conclusion 106 7.1 Visualization of point collections ..................................................... 106 7.2 Visualization of points of interest ................................................... 107 7.3 Production of multiscale maps ........................................................ 107 7.4 Synthesis of the research questions .............................................. 108 7.5 Contributions ....................................................................................... 109 7.6 Limitations ............................................................................................ 110 7.7 Outlook ................................................................................................. 111 8 References 113 9 Appendix 130 9.1 Zoom levels and Scale ...................................................................... 130 9.3 Full information about selected UGC papers ................................ 131 9.4 Timeline of mapping technologies .................................................. 133 9.5 Timeline of map providers ................................................................ 133 9.6 Code snippets from own map production workflows .................. 134 9.6.1 Vector tiles workflow ................................................................. 134 9.6.2 Raster tiles workflow.................................................................. 137Heute sind zoombare Karten Alltag für jeden Internetznutzer. Die Erstellung interaktiv zoombarer Karten ist allerdings wenig erforscht, was einen deutlichen Gegensatz zu ihrer aktuellen Bedeutung und Nutzungshäufigkeit darstellt. Die Forschung in diesem Bereich ist also umso notwendiger. Steigende Datenmengen und größere Regionen, die von Karten abgedeckt werden sollen, unterstreichen den Forschungsbedarf umso mehr. Beispiele für stetig wachsende Datenmengen sind Geodatenquellen wie OpenStreetMap aber auch freie amtliche Geodatensätze (OpenData), aber auch die zunehmende Zahl georeferenzierter Inhalte auf Internetplatformen wie Twitter oder Flickr zu nennen. Das Thema dieser Arbeit ist die Visualisierung eben dieser nutzergenerierten Geodaten mittels zoombarer Karten. Dafür wird die Entwicklung der zugrundeliegenden Technologien über die letzten zwei Jahr-zehnte und die damit verbundene Möglichkeiten vorgestellt. Weitere Beiträge sind zwei neue Visualisierungsmethoden, die sich besonders für die Darstellung von Punktdaten aus raumbezogenen nutzergenerierten Daten und georeferenzierte Daten aus Sozialen Netzwerken eignen. Ein Beitrag dieser Arbeit ist eine neue Visualisierungsmethode für raumbezogene Informationen in Form von Punktgeometrien mit nominal skalierten Daten aus Sozialen Medien, wie beispielsweise Twitter oder Flickr. Typisch für diese Daten ist eine hohe Anzahl von Beiträgen mit unterschiedlichen Kategorien. Wobei die Beiträge, bedingt durch ihre schiere Menge und ähnlicher Ei-genschaften, eher generisch als einzigartig sind. Ein Beitrag in den So-zia len Medien entspricht dabei einem Punkt mit einer bestimmten Katego-rie. Ein solcher Datensatz kann mit der neuen Methode der „micro diagrams“ in verschiedenen Maßstäben und Auflösungen visualisiert und analysiert werden. Dazu werden die Daten in kleine Gitterzellen aggregiert. Die Menge und Verteilung der über die Kategorien aggregierten Punkte wird durch kleine Diagramme dargestellt, wobei die Farben die verschiedenen Kategorien visualisieren. Durch die geringere Größe der einzelnen Diagramme verschmelzen die kleinen Diagramme visuell, je nach der Verteilung der Farben für die Kategorien. Bei genauerem Hinsehen ist die Schätzung der Menge der aggregierten Punkte über die Größe der Diagramme die Menge und die Verteilung über die Kategorien möglich. Für einzigartigere Punkte, die als Points of Interest (POI) angesehen werden, wird ein anderer Visualisierungsansatz vorgeschlagen, der auf einer Auswahlmethode basiert. Ziel ist es dabei lokal relevantere Punkte aus dem Datensatz zu identifizieren, die im Vergleich zu anderen Punkten in der Nachbarschaft des Punktes verglichen nach einem numerischen Attribut wichtiger sind. Die Methode ist von dem geographischen Prinzip der Dominanz von Bergen abgeleitet und wird „discrete isolation“ genannt. Es handelt sich dabei um die Distanz von einem Punkt zum nächsten mit einem höheren Attributwert. Durch die Verwendung dieses Maßes können lokal bedeutende Punkte leicht ausgewählt werden, indem ein minimaler Abstand gewählt und so räumlich gleichmäßig verteilte Punkte aus dem Datensatz ausgewählt werden. Die beiden neu vorgestellten Methoden werden in den Kontext der zoombaren Karten gestellt, indem exemplarische Arbeitsabläufe erstellt werden, die als Er-gebnis eine zoombare Karte liefern. Dazu werden die frei verfügbaren Beispiele zur Herstellung von weltweiten zoombaren Karten mit nutzergenerierten Geo-daten von OpenStreetMap, anhand der Kartenprojekte OpenMapTiles und O-penStreetMap Carto analysiert und in Arbeitsschritte gegliedert. Das Ergebnis ist ein wiederverwendbarer Arbeitsablauf zur Herstellung zoombarer Karten, ergänzt durch eine Auswahl von passender Software für die einzelnen Arbeits-schritte. Dabei wird insbesondere auf die Generalisierungsansätze in den Beispielprojekten eingegangen und diese anhand von Literatur in die kartographische Theorie eingeordnet. Zur Demonstration des Workflows wird je ein Raster Tiles Dienst für die „micro diagrams“ und ein Vektor Tiles Dienst für die „discrete isolation“ erstellt. Beide Dienste lassen sich mit einem aktuellen Webbrowser nutzen. Zusammenfassend ermöglichen diese neuen Visualisierungsansätze für Punkt-daten aus VGI und LBSM eine bessere qualitative Visualisierung der neuen Geodaten. Die Analyse riesiger globaler Datensätze ist immer noch eine Herausforderung, aber die Erforschung und Analyse verborgener Muster in den Daten ist lohnend. Die Erstellung solcher Visualisierungen und die Produktion von Karten in verschiedenen Maßstäben ist eine komplexe Aufgabe. Die in dieser Arbeit vorgestellten Arbeitsabläufe und Werkzeuge erleichtern die Erstellung von Karten in globalem Maßstab.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection vis

    Designing Data Spaces

    Get PDF
    This open access book provides a comprehensive view on data ecosystems and platform economics from methodical and technological foundations up to reports from practical implementations and applications in various industries. To this end, the book is structured in four parts: Part I “Foundations and Contexts” provides a general overview about building, running, and governing data spaces and an introduction to the IDS and GAIA-X projects. Part II “Data Space Technologies” subsequently details various implementation aspects of IDS and GAIA-X, including eg data usage control, the usage of blockchain technologies, or semantic data integration and interoperability. Next, Part III describes various “Use Cases and Data Ecosystems” from various application areas such as agriculture, healthcare, industry, energy, and mobility. Part IV eventually offers an overview of several “Solutions and Applications”, eg including products and experiences from companies like Google, SAP, Huawei, T-Systems, Innopay and many more. Overall, the book provides professionals in industry with an encompassing overview of the technological and economic aspects of data spaces, based on the International Data Spaces and Gaia-X initiatives. It presents implementations and business cases and gives an outlook to future developments. In doing so, it aims at proliferating the vision of a social data market economy based on data spaces which embrace trust and data sovereignty

    Design of an E-learning system using semantic information and cloud computing technologies

    Get PDF
    Humanity is currently suffering from many difficult problems that threaten the life and survival of the human race. It is very easy for all mankind to be affected, directly or indirectly, by these problems. Education is a key solution for most of them. In our thesis we tried to make use of current technologies to enhance and ease the learning process. We have designed an e-learning system based on semantic information and cloud computing, in addition to many other technologies that contribute to improving the educational process and raising the level of students. The design was built after much research on useful technology, its types, and examples of actual systems that were previously discussed by other researchers. In addition to the proposed design, an algorithm was implemented to identify topics found in large textual educational resources. It was tested and proved to be efficient against other methods. The algorithm has the ability of extracting the main topics from textual learning resources, linking related resources and generating interactive dynamic knowledge graphs. This algorithm accurately and efficiently accomplishes those tasks even for bigger books. We used Wikipedia Miner, TextRank, and Gensim within our algorithm. Our algorithm‘s accuracy was evaluated against Gensim, largely improving its accuracy. Augmenting the system design with the implemented algorithm will produce many useful services for improving the learning process such as: identifying main topics of big textual learning resources automatically and connecting them to other well defined concepts from Wikipedia, enriching current learning resources with semantic information from external sources, providing student with browsable dynamic interactive knowledge graphs, and making use of learning groups to encourage students to share their learning experiences and feedback with other learners.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Luis Sánchez Fernández.- Secretario: Luis de la Fuente Valentín.- Vocal: Norberto Fernández Garcí

    AXMEDIS 2008

    Get PDF
    The AXMEDIS International Conference series aims to explore all subjects and topics related to cross-media and digital-media content production, processing, management, standards, representation, sharing, protection and rights management, to address the latest developments and future trends of the technologies and their applications, impacts and exploitation. The AXMEDIS events offer venues for exchanging concepts, requirements, prototypes, research ideas, and findings which could contribute to academic research and also benefit business and industrial communities. In the Internet as well as in the digital era, cross-media production and distribution represent key developments and innovations that are fostered by emergent technologies to ensure better value for money while optimising productivity and market coverage

    On Personal Storage Systems: Architecture and Design Considerations

    Get PDF
    Actualment, els usuaris necessiten grans quantitats d’espai d’emmagatzematge remot per guardar la seva informació personal. En aquesta dissertació, estudiarem dues arquitectures emergents de sistemes d’emmagatzematge d’informació personal: els Núvols Personals (centralitzats) i els sistemes d’emmagatzematge social (descentralitzats). A la Part I d'aquesta tesi, contribuïm desvelant l’operació interna d’un Núvol Personal d’escala global, anomenat UbuntuOne (U1), incloent-hi la seva arquitectura, el seu servei de metadades i les interaccions d’emmagatzematge de dades. A més, proporcionem una anàlisi de la part de servidor d’U1 on estudiem la càrrega del sistema, el comportament dels usuaris i el rendiment del seu servei de metadades. També suggerim tota una sèrie de millores potencials al sistema que poden beneficiar sistemes similars. D'altra banda, en aquesta tesi també contribuïm mesurant i analitzant la qualitat de servei (p.e., velocitat, variabilitat) de les transferències sobre les REST APIs oferides pels Núvols Personals. A més, durant aquest estudi, ens hem adonat que aquestes interfícies poden ser objecte d’abús quan són utilitzades sobre els comptes gratuïts que normalment ofereixen aquests serveis. Això ha motivat l’estudi d’aquesta vulnerabilitat, així com de potencials contramesures. A la Part II d'aquesta dissertació, la nostra primera contribució és analitzar la qualitat de servei que els sistemes d’emmagatzematge social poden proporcionar en termes de disponibilitat de dades, velocitat de transferència i balanceig de la càrrega. El nostre interès principal és entendre com fenòmens intrínsecs, com les dinàmiques de connexió dels usuaris o l’estructura de la xarxa social, limiten el rendiment d’aquests sistemes. També proposem nous mecanismes de manegament de dades per millorar aquestes limitacions. Finalment, dissenyem una arquitectura híbrida que combina recursos del Núvol i dels usuaris. Aquesta arquitectura té com a objectiu millorar la qualitat de servei del sistema i deixa als usuaris decidir la quantitat de recursos utilitzats del Núvol, o en altres paraules, és una decisió entre control de les seves dades i rendiment.Los usuarios cada vez necesitan espacios mayores de almacenamiento en línea para guardar su información personal. Este reto motiva a los investigadores a diseñar y evaluar nuevas infraestructuras de almacenamiento de datos personales. En esta tesis, nos centramos en dos arquitecturas emergentes de almacenamiento de datos personales: las Nubes Personales (centralización) y los sistemas de almacenamiento social (descentralización). Creemos que, pese a su creciente popularidad, estos sistemas requieren de un mayor estudio científico. En la Parte I de esta disertación, examinamos aspectos referentes a la operación interna y el rendimiento de varias Nubes Personales. Concretamente, nuestra primera contribución es desvelar la operación interna e infraestructura de una Nube Personal de gran escala (UbuntuOne, U1). Además, proporcionamos un estudio de la actividad interna de U1 que incluye la carga diaria soportada, el comportamiento de los usuarios y el rendimiento de su sistema de metadatos. También sugerimos mejoras sobre U1 que pueden ser de utilidad en sistemas similares. Por otra parte, en esta tesis medimos y caracterizamos el rendimiento del servicio de REST APIs ofrecido por varias Nubes Personales (velocidad de transferencia, variabilidad, etc.). También demostramos que la combinación de REST APIs sobre cuentas gratuitas de usuario puede dar lugar a abusos por parte de usuarios malintencionados. Esto nos motiva a proponer mecanismos para limitar el impacto de esta vulnerabilidad. En la Parte II de esta tesis, estudiamos la calidad de servicio que pueden ofrecer los sistemas de almacenamiento social en términos de disponibilidad de datos, balanceo de carga y tiempos de transferencia. Nuestro interés principal es entender la manera en que fenómenos intrínsecos, como las dinámicas de conexión de los usuarios o la estructura de su red social, limitan el rendimiento de estos sistemas. También proponemos nuevos mecanismos de gestión de datos para mejorar esas limitaciones. Finalmente, diseñamos y evaluamos una arquitectura híbrida para mejorar la calidad de servicio de los sistemas de almacenamiento social que combina recursos de usuarios y de la Nube. Esta arquitectura permite al usuario decidir su equilibrio entre control de sus datos y rendimiento.Increasingly, end-users demand larger amounts of online storage space to store their personal information. This challenge motivates researchers to devise novel personal storage infrastructures. In this thesis, we focus on two popular personal storage architectures: Personal Clouds (centralized) and social storage systems (decentralized). In our view, despite their growing popularity among users and researchers, there still remain some critical aspects to address regarding these systems. In the Part I of this dissertation, we examine various aspects of the internal operation and performance of various Personal Clouds. Concretely, we first contribute by unveiling the internal structure of a global-scale Personal Cloud, namely UbuntuOne (U1). Moreover, we provide a back-end analysis of U1 that includes the study of the storage workload, the user behavior and the performance of the U1 metadata store. We also suggest improvements to U1 (storage optimizations, user behavior detection and security) that can also benefit similar systems. From an external viewpoint, we actively measure various Personal Clouds through their REST APIs for characterizing their QoS, such as transfer speed, variability and failure rate. We also demonstrate that combining open APIs and free accounts may lead to abuse by malicious parties, which motivates us to propose countermeasures to limit the impact of abusive applications in this scenario. In the Part II of this thesis, we study the storage QoS of social storage systems in terms of data availability, load balancing and transfer times. Our main interest is to understand the way intrinsic phenomena, such as the dynamics of users and the structure of their social relationships, limit the storage QoS of these systems, as well as to research novel mechanisms to ameliorate these limitations. Finally, we design and evaluate a hybrid architecture to enhance the QoS achieved by a social storage system that combines user resources and cloud storage to let users infer the right balance between user control and QoS

    Information Infrastructure Technology and Applications (IITA) Program: Annual K-12 Workshop

    Get PDF
    The purpose of the K-12 workshop is to stimulate a cross pollination of inter-center activity and introduce the regional centers to curing edge K-1 activities. The format of the workshop consists of project presentations, working groups, and working group reports, all contained in a three day period. The agenda is aggressive and demanding. The K-12 Education Project is a multi-center activity managed by the Information Infrastructure Technology and Applications (IITA)/K-12 Project Office at the NASA Ames Research Center (ARC). this workshop is conducted in support of executing the K-12 Education element of the IITA Project The IITA/K-12 Project funds activities that use the National Information Infrastructure (NII) (e.g., the Internet) to foster reform and restructuring in mathematics, science, computing, engineering, and technical education

    Open design and medical products

    Get PDF
    This research details the use of Open Design to enable participation in the conceptualisation, design and development of medical products for those who are excluded by their chronic health condition. The research was directed according to the Action Research methodology outlined by Checkland & Holwell (1998); Action Research being highlighted by Archer (1995) as a method compatible for practice-led design research. Open design directed the design practice, which consisted of a long case study spanning 18 months from February 2012, through to July 2013. This case study, dubbed AIR involved the creation of a bespoke online social network, recruitment of people living with cystic fibrosis, and the facilitation of collaborative design work resulting in prototype medical devices based on the lived experience of the participants. The work involves research into design within health as the context for this research. In order to place design in this wider context, it has been tempting to adopt the mantle Evidence Based Design Evans, 2010) – however in this research the position of design as phronesis, in a similar manner to health practice (Montgomery, 2005) is adopted. This allows for an alignment of the work done in both fields, without the problematic associations with an evidence hierarchy (Gaver & Bowers, 2012; Holmes, Murray, Perron, & Rail, 2006). The contribution to knowledge is an Open Medical Products Methodology, consisting of the artefacts supporting the evidence of the methodology’s ability to foster genuine participation amongst those who are excluded from traditional participatory design. The artefacts constituting this submission are this thesis, the reflective log kept during the research (Appendix A on page 135), the prototypes from the collaborative research (Appendix B on page 212), and the online social network that contained the work (AIR1 ). The Open Medical Products Methodology is expected to be of interest primarily to designers of medical products, design management and policymakers- although Open Design as a product methodology has appeal to other sectors and the future work into standardisation, regulation, distributed manufacture and recruitment detailed at the conclusion of this thesis has application broader than the medical field

    Network e-Volution

    Full text link
    Modern society is a network society permeated by information technology (IT). As a result of innovations in IT, enormous amounts of information can be communicated to a larger number of recipients faster than ever before. The evolution of networks is heavily influenced by the extensive use of IT, which has enabled co-evolving advanced quantitative and qualitative forms of networking. Although several networks have been formed with the aim to reduce or deal with uncertainty through faster and broader access to information, it is in fact IT that has created new kinds of uncertainty. For instance, although digital information integration in supply chains has made production planning more robust, it has at the same time intensified mutual dependencies, thereby actually increasing the level of uncertainty. The aim of this working paper is to investigate the aspects of evolving networks and uncertainty in networks at the cutting edges of different types of networks and from the perspective of different layers defining these networks
    corecore