404 research outputs found

    A STUDY OF MACHINE VISION IN THE AUTOMOTIVE INDUSTRY

    Get PDF
    With the growth of industrial automation, it has become increasingly important to validate the quality of every manufactured part during production. Until now, human visual inspection aided with hard tooling or machines have been the primary means to this end, but the speed of today's production lines, the complexity of production equipment and the highest standards of quality to which parts must adhere frequently, make the traditional methods of industrial inspection and control impractical, if not impossible. Subsequently, new solutions have been developed for the monitoring and control of industrial processes, in real­time. One such technology is the area of machine vision. After many years of research and development, computerised vision systems are now leaving the laboratory and are being used successfully in the factory environment. They are both robust and competitively priced as a sensing technique which has now opened up a whole new sector for automation. Machine vision systems are becoming an important integral part of the automotive manufacturing process, with applications ranging from inspection, classification, robot guidance, assembly verification through to process monitoring and control. Although the number of systems in current use is still relatively small, there can be no doubt, given the issues at stake, that the automotive industry will once again lead the way with the implementation of machine vision just as it has done robotic technology. The thesis considered the issue of machine vision and in particular, its deployment within the automotive industry. The thesis has presented work on machine vision for the prospective end-user and not the designer of such systems. It will provide sufficient background about the subject, to separate machine vision promises from reality and permit intelligent decisions regarding machine vision applications to be made. The initial part of the dissertation focussed on the strategic issues affecting the selection of machine vision at the planning stage, such as a listing of the factors to justify investment, the capability of the technology and type of problems that are associated with this relatively new but complex science. Though it is widely accepted that no two industrial machine vision systems are identical, knowledge of the basic fundamentals which underpin the structure of the technology in its application is presented. This work covered a structured description detailing typical hardware components such as camera technology, lighting systems, etc... which form an integral part of an industrial system and discussions regarding the criteria for selection are presented. To complement this work, a further section is specifically devoted to the bewildering array of vision software analysis techniques which are currently available today. A detailed description of the various techniques that are applied to images in order to make use of and understand the data contained within them are discussed and explored. Applications for machine vision fall into two main categories namely robotic guidance and inspection. Obviously within each category there are many further sub­groups. Within this context the latter part of the thesis reviews with a well structured description of several industrial case studies derived from the automotive industry, which illustrate that machine vision is capable of providing real time solutions to manufacturing based problems. In conclusion, despite the limited availability of industrially based machine vision systems, the success of implementation is not always guaranteed, as the technology imposes both technical limitations and introduce new human engineering considerations. By understanding the application and the implications of the technical requirements on both the "staging" and the "image-processing" power required of the machine vision system. The thesis has shown that the most significant elements of a successful application are indeed the lighting, optics, component design, etc... - the "Staging". From the case studies investigated, optimised "staging" has resulted in the need for less computing power in the machine vision system. Inevitably, greater computing power not only requires more time but is generally more expensive. The experience gained from the this project, has demonstrated that machine vision technology is a realistic alternative means of capturing data in real-time. Since the current limitations of the technology are well suited to the delivery process of the quality function within the manufacturing process

    Visual servoing of a five-bar linkage mechanism /

    Get PDF
    This document is the written product of the graduation project developed: Visual Servoing of a Five-bar Linkage Mechanism. This project means to venture into the fields of a method of control, with visual feedback, known as Visual Servoing. The contents of this document show a summary of all the theory taken into account to realize the project. They also shows how other people have approached this method. These pages present the project establishing its aims, the importance of its realization, a detailed description of how it was carried out - including experiments and obstacles, - and the results obtained. This document also informs how is this work of use and what can be done from it. In the same way, here are consigned the books, articles, and works consulted in the way, which in their own pages provide a large quantity of references and information.Incluye referencias bibliográfica

    Dynamic Compensation Framework to Improve the Autonomy of Industrial Robots

    Get PDF
    It is challenging to realize the autonomy of industrial robots under external and internal uncertainties. A majority of industrial robots are supposed to be programmed by teaching-playback method, which is not able to handle with uncertain working conditions. Although many studies have been conducted to improve the autonomy of industrial robots by utilizing external sensors with model-based approaches as well as adaptive approaches, it is still difficult to obtain good performance. In this chapter, we present a dynamic compensation framework based on a coarse-to-fine strategy to improve the autonomy of industrial robots while at the same time keeping good accuracy under many uncertainties. The proposed framework for industrial robot is designed along with a general intelligence architecture that is aiming to address the big issues such as smart manufacturing, industrial 4.0

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    DULA and DEBA: Differentiable Ergonomic Risk Models for Postural Assessment and Optimization in Ergonomically Intelligent pHRI

    Full text link
    Ergonomics and human comfort are essential concerns in physical human-robot interaction applications. Defining an accurate and easy-to-use ergonomic assessment model stands as an important step in providing feedback for postural correction to improve operator health and comfort. Common practical methods in the area suffer from inaccurate ergonomics models in performing postural optimization. In order to retain assessment quality, while improving computational considerations, we propose a novel framework for postural assessment and optimization for ergonomically intelligent physical human-robot interaction. We introduce DULA and DEBA, differentiable and continuous ergonomics models learned to replicate the popular and scientifically validated RULA and REBA assessments with more than 99% accuracy. We show that DULA and DEBA provide assessment comparable to RULA and REBA while providing computational benefits when being used in postural optimization. We evaluate our framework through human and simulation experiments. We highlight DULA and DEBA's strength in a demonstration of postural optimization for a simulated pHRI task.Comment: Submitted to IROS 2022. arXiv admin note: substantial text overlap with arXiv:2108.0597

    Proceedings of the 1977 NASA/ISHM Microelectronics Conference

    Get PDF
    Current and future requirements for research, development, manufacturing and education in the field of hybrid microelectronic technology were discussed

    Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware

    Full text link
    Fine manipulation tasks, such as threading cable ties or slotting a battery, are notoriously difficult for robots because they require precision, careful coordination of contact forces, and closed-loop visual feedback. Performing these tasks typically requires high-end robots, accurate sensors, or careful calibration, which can be expensive and difficult to set up. Can learning enable low-cost and imprecise hardware to perform these fine manipulation tasks? We present a low-cost system that performs end-to-end imitation learning directly from real demonstrations, collected with a custom teleoperation interface. Imitation learning, however, presents its own challenges, particularly in high-precision domains: errors in the policy can compound over time, and human demonstrations can be non-stationary. To address these challenges, we develop a simple yet novel algorithm, Action Chunking with Transformers (ACT), which learns a generative model over action sequences. ACT allows the robot to learn 6 difficult tasks in the real world, such as opening a translucent condiment cup and slotting a battery with 80-90% success, with only 10 minutes worth of demonstrations. Project website: https://tonyzhaozh.github.io/aloha
    corecore