7 research outputs found

    Biometrics based privacy-preserving authentication and mobile template protection

    Get PDF
    Smart mobile devices are playing a more and more important role in our daily life. Cancelable biometrics is a promising mechanism to provide authentication to mobile devices and protect biometric templates by applying a noninvertible transformation to raw biometric data. However, the negative effect of nonlinear distortion will usually degrade the matching performance significantly, which is a nontrivial factor when designing a cancelable template. Moreover, the attacks via record multiplicity (ARM) present a threat to the existing cancelable biometrics, which is still a challenging open issue. To address these problems, in this paper, we propose a new cancelable fingerprint template which can not only mitigate the negative effect of nonlinear distortion by combining multiple feature sets, but also defeat the ARM attack through a proposed feature decorrelation algorithm. Our work is a new contribution to the design of cancelable biometrics with a concrete method against the ARM attack. Experimental results on public databases and security analysis show the validity of the proposed cancelable template

    Ridge orientation modeling and feature analysis for fingerprint identification

    Get PDF
    This thesis systematically derives an innovative approach, called FOMFE, for fingerprint ridge orientation modeling based on 2D Fourier expansions, and explores possible applications of FOMFE to various aspects of a fingerprint identification system. Compared with existing proposals, FOMFE does not require prior knowledge of the landmark singular points (SP) at any stage of the modeling process. This salient feature makes it immune from false SP detections and robust in terms of modeling ridge topology patterns from different typological classes. The thesis provides the motivation of this work, thoroughly reviews the relevant literature, and carefully lays out the theoretical basis of the proposed modeling approach. This is followed by a detailed exposition of how FOMFE can benefit fingerprint feature analysis including ridge orientation estimation, singularity analysis, global feature characterization for a wide variety of fingerprint categories, and partial fingerprint identification. The proposed methods are based on the insightful use of theory from areas such as Fourier analysis of nonlinear dynamic systems, analytical operators from differential calculus in vector fields, and fluid dynamics. The thesis has conducted extensive experimental evaluation of the proposed methods on benchmark data sets, and drawn conclusions about strengths and limitations of these new techniques in comparison with state-of-the-art approaches. FOMFE and the resulting model-based methods can significantly improve the computational efficiency and reliability of fingerprint identification systems, which is important for indexing and matching fingerprints at a large scale

    FEATURE EXTRACTION AND MATCHING OF PALMPRINTS USING LEVEL I DETAIL

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of PhilosophyCurrent Automatic Palmprint Identification Systems (APIS) closely follow the matching philosophy of Automatic Fingerprint Identification Systems (AFIS), in that they exclusively use a small subset of Level II palmar detail, when matching a latent to an exemplar palm print. However, due the increased size and the significantly more complex structure of the palm, it has long been recognised that there is much detail that remains underutilised. Forensic examiners routinely use this additional information when manually matching latents. The thesis develops novel automatic feature extraction and matching methods which exploit the underutilised Level I detail contained in the friction ridge flow. When applied to a data base of exemplars, the approach creates a ranked list of matches. It is shown that the matching success rate varied with latent size. For latents of diameter 38mm, 91:1% were ranked first and 95:6% of the matches were contained within the ranked top 10. The thesis presents improved orientation field extraction methods which are optimised for friction ridge flow and novel enhancement techniques, based upon the novel use of local circular statistics on palmar orientation fields. In combination, these techniques are shown to provide a more accurate orientation estimate than previous work. The novel feature extraction stages exploit the level sets of higher order local circular statistics, which naturally segment the palm into homogeneous regions representing Level I detail. These homogeneous regions, characterised by their spatial and circular features, are used to form a novel compact tree-like hierarchical representation of the Level I detail. Matching between the latent and an exemplar is performed between their respective tree-like hierarchical structures. The methods developed within the thesis are complementary to current APIS techniques

    Recognizing Human Faces: Physical Modeling and Pattern Classification

    Get PDF
    Although significant work has been done in the field of face recognition, the performance of the state-of-the-art face recognition algorithms is not good enough to be effective in operational systems. Most algorithms work well for controlled images but are quite susceptible to changes in illumination, pose, etc. In this dissertation, we propose methods which address these issues, to recognize faces in more realistic scenarios. The developed approaches show the importance of physical modeling, contextual constraints and pattern classification for this task. For still image-based face recognition, we develop an algorithm to recognize faces illuminated by arbitrarily placed, multiple light sources, given just a single image. Though the problem is ill-posed in its generality, linear approximations to the subspace of Lambertian images in combination with rank constraints on unknown facial shape and albedo are used to make it tractable. In addition, we develop a purely geometric illumination-invariant matching algorithm that makes use of the bilateral symmetry of human faces. In particular, we prove that the set of images of bilaterally symmetric objects can be partitioned into equivalence classes such that it is always possible to distinguish between two objects belonging to different equivalence classes using just one image per object. For recognizing faces in videos, the challenge lies in suitable characterization of faces using the information available in the video. We propose a method that models a face as a linear dynamical system whose appearance changes with pose. Though the proposed method performs very well on the available datasets, it does not explicitly take the 3D structure or illumination conditions into account. To address these issues, we propose an algorithm to perform 3D facial pose tracking in videos. The approach combines the structural advantages of geometric modeling with the statistical advantages of a particle filter based inference to recover the 3D configuration of facial features in each frame of the video. The recovered 3D configuration parameters are further used to recognize faces in videos. From a pattern classification point of view, automatic face recognition presents a very unique challenge due to the presence of just one (or a few) sample(s) per identity. To address this, we develop a cohort-based framework that makes use of the large number of non-match samples present in the database to improve verification and identification performance

    A score-level fusion fingerprint indexing approach based on minutiae vicinity and minutia cylinder-code

    No full text

    Tematski zbornik radova međunarodnog značaja. Tom 3 / Međunarodni naučni skup "Dani Arčibalda Rajsa", Beograd, 1-2. mart 2013

    Get PDF
    The Thematic Conference Proceedings contains 138 papers written by eminent scholars in the field of law, security, criminalistics, police studies, forensics, medicine, as well as members of national security system participating in education of the police, army and other security services from Russia, Ukraine, Belarus, China, Poland, Slovakia, Czech Republic, Hungary, Slovenia, Bosnia and Herzegovina, Montenegro, Republic of Srpska and Serbia. Each paper has been reviewed by two competent international reviewers, and the Thematic Conference Proceedings in whole has been reviewed by five international reviewers. The papers published in the Thematic Conference Proceedings contain the overview of con-temporary trends in the development of police educational system, development of the police and contemporary security, criminalistics and forensics, as well as with the analysis of the rule of law activities in crime suppression, situation and trends in the above-mentioned fields, and suggestions on how to systematically deal with these issues. The Thematic Conference Proceedings represents a significant contribution to the existing fund of scientific and expert knowledge in the field of criminalistic, security, penal and legal theory and practice. Publication of this Conference Proceedings contributes to improving of mutual cooperation between educational, scientific and expert institutions at national, regional and international level
    corecore