598 research outputs found

    A weighted q-gram method for glycan structure classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glycobiology pertains to the study of carbohydrate sugar chains, or glycans, in a particular cell or organism. Many computational approaches have been proposed for analyzing these complex glycan structures, which are chains of monosaccharides. The monosaccharides are linked to one another by glycosidic bonds, which can take on a variety of comformations, thus forming branches and resulting in complex tree structures. The <it>q</it>-gram method is one of these recent methods used to understand glycan function based on the classification of their tree structures. This <it>q</it>-gram method assumes that for a certain <it>q</it>, different <it>q</it>-grams share no similarity among themselves. That is, that if two structures have completely different components, then they are completely different. However, from a biological standpoint, this is not the case. In this paper, we propose a weighted <it>q</it>-gram method to measure the similarity among glycans by incorporating the similarity of the geometric structures, monosaccharides and glycosidic bonds among <it>q</it>-grams. In contrast to the traditional <it>q</it>-gram method, our weighted <it>q</it>-gram method admits similarity among <it>q</it>-grams for a certain <it>q</it>. Thus our new kernels for glycan structure were developed and then applied in SVMs to classify glycans.</p> <p>Results</p> <p>Two glycan datasets were used to compare the weighted <it>q</it>-gram method and the original <it>q</it>-gram method. The results show that the incorporation of <it>q</it>-gram similarity improves the classification performance for all of the important glycan classes tested.</p> <p>Conclusion</p> <p>The results in this paper indicate that similarity among <it>q</it>-grams obtained from geometric structure, monosaccharides and glycosidic linkage contributes to the glycan function classification. This is a big step towards the understanding of glycan function based on their complex structures.</p

    Multi-block data integration analysis for identifying and validating targeted N-glycans as biomarkers for type II diabetes mellitus

    Get PDF
    Plasma N-glycan profiles have been shown to be defective in type II diabetes Mellitus (T2DM) and holds a promise to discovering biomarkers. The study comprised 232 T2DM patients and 219 healthy individuals. N-glycans were analysed by high-performance liquid chromatography. The multivariate integrative framework, DIABLO was employed for the statistical analysis. N-glycan groups (GPs 34, 32, 26, 31, 36 and 30) were significantly expressed in T2DM in component 1 and GPs 38 and 20 were related to T2DM in component 2. Four clusters were observed based on the correlation of the expressive signatures of the 39 N-glycans across T2DM and controls. Cluster A, B, C and D had 16, 16, 4 and 3 N-glycans respectively, of which 11, 8, 1 and 1 were found to express differently between controls and T2DM in a univariate analysis (p\u3c 0.05). Multi-block analysis revealed that trigalactosylated (G3), triantennary (TRIA), high branching (HB) and trisialylated (S3) expressed significantly highly in T2DM than healthy controls. A bipartite relevance network revealed that HB, monogalactosylated (G1) and G3 were central in the network and observed more connections, highlighting their importance in discriminating between T2DM and healthy controls. Investigation of these N-glycans can enhance the understanding of T2DM

    Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance.</p> <p>Results</p> <p>The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties.</p> <p>Conclusion</p> <p>For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans.</p

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed

    The conservation and evolutionary modularity of metabolism

    Get PDF
    A novel evolutionary analysis of metabolic networks across 26 taxa reveals a highly-conserved but flexible core of metabolic enzymes

    Computational Biology and Chemistry

    Get PDF
    The use of computers and software tools in biochemistry (biology) has led to a deep revolution in basic sciences and medicine. Bioinformatics and systems biology are the direct results of this revolution. With the involvement of computers, software tools, and internet services in scientific disciplines comprising biology and chemistry, new terms, technologies, and methodologies appeared and established. Bioinformatic software tools, versatile databases, and easy internet access resulted in the occurrence of computational biology and chemistry. Today, we have new types of surveys and laboratories including “in silico studies” and “dry labs” in which bioinformaticians conduct their investigations to gain invaluable outcomes. These features have led to 3-dimensioned illustrations of different molecules and complexes to get a better understanding of nature
    corecore