209 research outputs found

    A scattering and repulsive swarm intelligence algorithm for solving global optimization problems

    Get PDF
    The firefly algorithm (FA), as a metaheuristic search method, is useful for solving diverse optimization problems. However, it is challenging to use FA in tackling high dimensional optimization problems, and the random movement of FA has a high likelihood to be trapped in local optima. In this research, we propose three improved algorithms, i.e., Repulsive Firefly Algorithm (RFA), Scattering Repulsive Firefly Algorithm (SRFA), and Enhanced SRFA (ESRFA), to mitigate the premature convergence problem of the original FA model. RFA adopts a repulsive force strategy to accelerate fireflies (i.e. solutions) to move away from unpromising search regions, in order to reach global optimality in fewer iterations. SRFA employs a scattering mechanism along with the repulsive force strategy to divert weak neighbouring solutions to new search regions, in order to increase global exploration. Motivated by the survival tactics of hawk-moths, ESRFA incorporates a hovering-driven attractiveness operation, an exploration-driven evading mechanism, and a learning scheme based on the historical best experience in the neighbourhood to further enhance SRFA. Standard and CEC2014 benchmark optimization functions are used for evaluation of the proposed FA-based models. The empirical results indicate that ESRFA, SRFA and RFA significantly outperform the original FA model, a number of state-of-the-art FA variants, and other swarm-based algorithms, which include Simulated Annealing, Cuckoo Search, Particle Swarm, Bat Swarm, Dragonfly, and Ant-Lion Optimization, in diverse challenging benchmark functions

    Reliable cost-optimal deployment of wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) technology is currently considered one of the key technologies for realizing the Internet of Things (IoT). Many of the important WSNs applications are critical in nature such that the failure of the WSN to carry out its required tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the fundamental requirements of the network deployment strategy. Achieving this requirement at a minimum deployment cost is particularly important for critical applications in which deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in the traditional sense, especially in conjunction with minimizing the deployment cost, has not been considered as a deployment requirement in existing WSN deployment algorithms to the best of our knowledge. Addressing this major limitation is the central focus of this dissertation. We define the reliable cost-optimal WSN deployment as the one that has minimum deployment cost with a reliability level that meets or exceeds a minimum level specified by the targeted application. We coin the problem of finding such deployments, for a given set of application-specific parameters, the Minimum-Cost Reliability-Constrained Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation, we propose a novel WSN reliability metric which adopts a more accurate SN model than the model used in the existing metrics. The proposed reliability metric is used to formulate the MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-Complete. Two heuristic WSN deployment optimization algorithms are then developed to find high quality solutions for the MCRC-SDP. Finally, we investigate the practical realization of the techniques that we developed as solutions of the MCRC-SDP. For this purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable for managing such reliable cost-optimal deployments. Accordingly, we propose a practical TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such deployments. Experimental results suggest that the proposed TCP\u27s overhead and network Time To Repair (TTR) are relatively low which demonstrates the applicability of our proposed deployment solution in practice

    Intelligent human action recognition using an ensemble model of evolving deep networks with swarm-based optimization.

    Get PDF
    Automatic interpretation of human actions from realistic videos attracts increasing research attention owing to its growing demand in real-world deployments such as biometrics, intelligent robotics, and surveillance. In this research, we propose an ensemble model of evolving deep networks comprising Convolutional Neural Networks (CNNs) and bidirectional Long Short-Term Memory (BLSTM) networks for human action recognition. A swarm intelligence (SI)-based algorithm is also proposed for identifying the optimal hyper-parameters of the deep networks. The SI algorithm plays a crucial role for determining the BLSTM network and learning configurations such as the learning and dropout rates and the number of hidden neurons, in order to establish effective deep features that accurately represent the temporal dynamics of human actions. The proposed SI algorithm incorporates hybrid crossover operators implemented by sine, cosine, and tanh functions for multiple elite offspring signal generation, as well as geometric search coefficients extracted from a three-dimensional super-ellipse surface. Moreover, it employs a versatile search process led by the yielded promising offspring solutions to overcome stagnation. Diverse CNN–BLSTM networks with distinctive hyper-parameter settings are devised. An ensemble model is subsequently constructed by aggregating a set of three optimized CNN–BLSTM​ networks based on the average prediction probabilities. Evaluated using several publicly available human action data sets, our evolving ensemble deep networks illustrate statistically significant superiority over those with default and optimal settings identified by other search methods. The proposed SI algorithm also shows great superiority over several other methods for solving diverse high-dimensional unimodal and multimodal optimization functions with artificial landscapes

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    A Heuristic Methodology for Optimal Deployment of Radar Systems in a Constrained Area of Operation

    Get PDF
    In emerging network-centric warfare scenarios, the location of sensors in the sensor-grid plays a dominant role in determining the effectiveness of air defence against enemy air threats. Maximising the coverage area of sensors in the sensor-grid, considering operational performance parameters, terrain features and deployability is a challenging task for military operational planners and commanders. Such optimisation problems may not be amenable to classical operations research techniques, or may require enormous computational time to arrive at the results as the decision space grows non-linearly for large areas of operation. In this paper, a novel methodology that uses a heuristic technique (genetic algorithms) to compute the optimal or near-optimal deployment locations for a given set of sensors in a constrained area of operation is proposed. The proposed methodology is illustrated with a number of case studies and a decision support tool is developed as an aid to the military commanders

    A microparticle swarm optimizer for the reconstruction of microwave images

    Full text link
    A novel optimization technique known as the microparticle swarm optimizer (μPSO) is proposed for high-dimensional microwave image reconstruction. With the proposed μPSO, good optimization performance can be obtained especially for solving high-dimensional optimization problems. In addition, the proposed μPSO requires only a small population size to outperform the standard PSO that uses a larger population size. Our simulation results on the reconstruction of the dielectric properties of normal and malignant breast tissues have shown that the μPSO can perform quite well for this high-dimensional microwave image reconstruction problem. © 2007 IEEE

    Evolving Ensemble Models for Image Segmentation Using Enhanced Particle Swarm Optimization

    Get PDF
    In this paper, we propose particle swarm optimization (PSO)-enhanced ensemble deep neural networks and hybrid clustering models for skin lesion segmentation. A PSO variant is proposed, which embeds diverse search actions including simulated annealing, levy flight, helix behavior, modified PSO, and differential evolution operations with spiral search coefficients. These search actions work in a cascade manner to not only equip each individual with different search operations throughout the search process but also assign distinctive search actions to different particles simultaneously in every single iteration. The proposed PSO variant is used to optimize the learning hyper-parameters of convolutional neural networks (CNNs) and the cluster centroids of classical Fuzzy C-Means clustering respectively to overcome performance barriers. Ensemble deep networks and hybrid clustering models are subsequently constructed based on the optimized CNN and hybrid clustering segmenters for lesion segmentation. We evaluate the proposed ensemble models using three skin lesion databases, i.e., PH2, ISIC 2017, and Dermofit Image Library, and a blood cancer data set, i.e., ALL-IDB2. The empirical results indicate that our models outperform other hybrid ensemble clustering models combined with advanced PSO variants, as well as state-of-the-art deep networks in the literature for diverse challenging image segmentation tasks

    Victoria Amazonica Optimization (VAO): An Algorithm Inspired by the Giant Water Lily Plant

    Full text link
    The Victoria Amazonica plant, often known as the Giant Water Lily, has the largest floating spherical leaf in the world, with a maximum leaf diameter of 3 meters. It spreads its leaves by the force of its spines and creates a large shadow underneath, killing any plants that require sunlight. These water tyrants use their formidable spines to compel each other to the surface and increase their strength to grab more space from the surface. As they spread throughout the pond or basin, with the earliest-growing leaves having more room to grow, each leaf gains a unique size. Its flowers are transsexual and when they bloom, Cyclocephala beetles are responsible for the pollination process, being attracted to the scent of the female flower. After entering the flower, the beetle becomes covered with pollen and transfers it to another flower for fertilization. After the beetle leaves, the flower turns into a male and changes color from white to pink. The male flower dies and sinks into the water, releasing its seed to help create a new generation. In this paper, the mathematical life cycle of this magnificent plant is introduced, and each leaf and blossom are treated as a single entity. The proposed bio-inspired algorithm is tested with 24 benchmark optimization test functions, such as Ackley, and compared to ten other famous algorithms, including the Genetic Algorithm. The proposed algorithm is tested on 10 optimization problems: Minimum Spanning Tree, Hub Location Allocation, Quadratic Assignment, Clustering, Feature Selection, Regression, Economic Dispatching, Parallel Machine Scheduling, Color Quantization, and Image Segmentation and compared to traditional and bio-inspired algorithms. Overall, the performance of the algorithm in all tasks is satisfactory.Comment: 45 page

    Feature selection using enhanced particle swarm optimisation for classification models.

    Get PDF
    In this research, we propose two Particle Swarm Optimisation (PSO) variants to undertake feature selection tasks. The aim is to overcome two major shortcomings of the original PSO model, i.e., premature convergence and weak exploitation around the near optimal solutions. The first proposed PSO variant incorporates four key operations, including a modified PSO operation with rectified personal and global best signals, spiral search based local exploitation, Gaussian distribution-based swarm leader enhancement, and mirroring and mutation operations for worst solution improvement. The second proposed PSO model enhances the first one through four new strategies, i.e., an adaptive exemplar breeding mechanism incorporating multiple optimal signals, nonlinear function oriented search coefficients, exponential and scattering schemes for swarm leader, and worst solution enhancement, respectively. In comparison with a set of 15 classical and advanced search methods, the proposed models illustrate statistical superiority for discriminative feature selection for a total of 13 data sets

    Path Planning for Shepherding a Swarm in a Cluttered Environment using Differential Evolution

    Full text link
    Shepherding involves herding a swarm of agents (\emph{sheep}) by another a control agent (\emph{sheepdog}) towards a goal. Multiple approaches have been documented in the literature to model this behaviour. In this paper, we present a modification to a well-known shepherding approach, and show, via simulation, that this modification improves shepherding efficacy. We then argue that given complexity arising from obstacles laden environments, path planning approaches could further enhance this model. To validate this hypothesis, we present a 2-stage evolutionary-based path planning algorithm for shepherding a swarm of agents in 2D environments. In the first stage, the algorithm attempts to find the best path for the sheepdog to move from its initial location to a strategic driving location behind the sheep. In the second stage, it calculates and optimises a path for the sheep. It does so by using \emph{way points} on that path as the sequential sub-goals for the sheepdog to aim towards. The proposed algorithm is evaluated in obstacle laden environments via simulation with further improvements achieved
    • …
    corecore