8,591 research outputs found

    Single-Event Upset Analysis and Protection in High Speed Circuits

    Get PDF
    The effect of single-event transients (SETs) (at a combinational node of a design) on the system reliability is becoming a big concern for ICs manufactured using advanced technologies. An SET at a node of combinational part may cause a transient pulse at the input of a flip-flop and consequently is latched in the flip-flop and generates a soft-error. When an SET conjoined with a transition at a node along a critical path of the combinational part of a design, a transient delay fault may occur at the input of a flip-flop. On the other hand, increasing pipeline depth and using low power techniques such as multi-level power supply, and multi-threshold transistor convert almost all paths in a circuit to critical ones. Thus, studying the behavior of the SET in these kinds of circuits needs special attention. This paper studies the dynamic behavior of a circuit with massive critical paths in the presence of an SET. We also propose a novel flip-flop architecture to mitigate the effects of such SETs in combinational circuits. Furthermore, the proposed architecture can tolerant a single event upset (SEU) caused by particle strike on the internal nodes of a flip-flo

    DFT and BIST of a multichip module for high-energy physics experiments

    Get PDF
    Engineers at Politecnico di Torino designed a multichip module for high-energy physics experiments conducted on the Large Hadron Collider. An array of these MCMs handles multichannel data acquisition and signal processing. Testing the MCM from board to die level required a combination of DFT strategie

    Concepts for on-board satellite image registration. Volume 3: Impact of VLSI/VHSIC on satellite on-board signal processing

    Get PDF
    Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort

    Extensible sparse functional arrays with circuit parallelism

    Get PDF
    A longstanding open question in algorithms and data structures is the time and space complexity of pure functional arrays. Imperative arrays provide update and lookup operations that require constant time in the RAM theoretical model, but it is conjectured that there does not exist a RAM algorithm that achieves the same complexity for functional arrays, unless restrictions are placed on the operations. The main result of this paper is an algorithm that does achieve optimal unit time and space complexity for update and lookup on functional arrays. This algorithm does not run on a RAM, but instead it exploits the massive parallelism inherent in digital circuits. The algorithm also provides unit time operations that support storage management, as well as sparse and extensible arrays. The main idea behind the algorithm is to replace a RAM memory by a tree circuit that is more powerful than the RAM yet has the same asymptotic complexity in time (gate delays) and size (number of components). The algorithm uses an array representation that allows elements to be shared between many arrays with only a small constant factor penalty in space and time. This system exemplifies circuit parallelism, which exploits very large numbers of transistors per chip in order to speed up key algorithms. Extensible Sparse Functional Arrays (ESFA) can be used with both functional and imperative programming languages. The system comprises a set of algorithms and a circuit specification, and it has been implemented on a GPGPU with good performance

    A comprehensive comparison between design for testability techniques for total dose testing of flash-based FPGAs

    Get PDF
    Radiation sources exist in different kinds of environments where electronic devices often operate. Correct device operation is usually affected negatively by radiation. The radiation resultant effect manifests in several forms depending on the operating environment of the device like total ionizing dose effect (TID), or single event effects (SEEs) such as single event upset (SEU), single event gate rupture (SEGR), and single event latch up (SEL). CMOS circuits and Floating gate MOS circuits suffer from an increase in the delay and the leakage current due to TID effect. This may damage the proper operation of the integrated circuit. Exhaustive testing is needed for devices operating in harsh conditions like space and military applications to ensure correct operations in the worst circumstances. The use of worst case test vectors (WCTVs) for testing is strongly recommended by MIL-STD-883, method 1019, which is the standard describing the procedure for testing electronic devices under radiation. However, the difficulty of generating these test vectors hinders their use in radiation testing. Testing digital circuits in the industry is usually done nowadays using design for testability (DFT) techniques as they are very mature and can be relied on. DFT techniques include, but not limited to, ad-hoc technique, built-in self test (BIST), muxed D scan, clocked scan and enhanced scan. DFT is usually used with automatic test patterns generation (ATPG) software to generate test vectors to test application specific integrated circuits (ASICs), especially with sequential circuits, against faults like stuck at faults and path delay faults. Despite all these recommendations for DFT, radiation testing has not benefited from this reliable technology yet. Also, with the big variation in the DFT techniques, choosing the right technique is the bottleneck to achieve the best results for TID testing. In this thesis, a comprehensive comparison between different DFT techniques for TID testing of flash-based FPGAs is made to help designers choose the best suitable DFT technique depending on their application. The comparison includes muxed D scan technique, clocked scan technique and enhanced scan technique. The comparison is done using ISCAS-89 benchmarks circuits. Points of comparisons include FPGA resources utilization, difficulty of designs bring-up, added delay by DFT logic and robust testable paths in each technique

    The first version Buffered Large Analog Bandwidth (BLAB1) ASIC for high luminosity collider and extensive radio neutrino detectors

    Full text link
    Future detectors for high luminosity particle identification and ultra high energy neutrino observation would benefit from a digitizer capable of recording sensor elements with high analog bandwidth and large record depth, in a cost-effective, compact and low-power way. A first version of the Buffered Large Analog Bandwidth (BLAB1) ASIC has been designed based upon the lessons learned from the development of the Large Analog Bandwidth Recorder and Digitizer with Ordered Readout (LABRADOR) ASIC. While this LABRADOR ASIC has been very successful and forms the basis of a generation of new, large-scale radio neutrino detectors, its limited sampling depth is a major drawback. A prototype has been designed and fabricated with 65k deep sampling at multi-GSa/s operation. We present test results and directions for future evolution of this sampling technique.Comment: 15 pages, 26 figures; revised, accepted for publication in NIM

    AER Neuro-Inspired interface to Anthropomorphic Robotic Hand

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for neuro-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The information transmitted is a sequence of spikes coded using high speed digital buses. These multi-layer and multi-chip AER systems perform actually not only image processing, but also audio processing, filtering, learning, locomotion, etc. This paper present an AER interface for controlling an anthropomorphic robotic hand with a neuro-inspired system.UniĂłn Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y TecnologĂ­a TIC-2003-08164-C03-02Ministerio de Ciencia y TecnologĂ­a TIC2000-0406-P4- 0

    Design-for-delay-testability techniques for high-speed digital circuits

    Get PDF
    The importance of delay faults is enhanced by the ever increasing clock rates and decreasing geometry sizes of nowadays' circuits. This thesis focuses on the development of Design-for-Delay-Testability (DfDT) techniques for high-speed circuits and embedded cores. The rising costs of IC testing and in particular the costs of Automatic Test Equipment are major concerns for the semiconductor industry. To reverse the trend of rising testing costs, DfDT is\ud getting more and more important
    • 

    corecore