199 research outputs found

    Large Eddy Simulation of liquid jet primary breakup

    Get PDF
    Atomisation of liquid fuel jets is an important determinant of combustion performance in gas turbine engines, and thus is the prime research driver here. Since the first stage of the atomisation process primary breakup has not been well understood due to its complexity, the objective of the current project is to develop a robust algorithm for Large Eddy Simulation (LES) to predict primary breakup. In order to provide realistic turbulent inflows for LES of liquid jet primary breakup, a rescaling/recycling method has been developed and validated. Three interface capturing ethods, namely Level Set (LS), Volume of Fluid (VOF), and coupled Level Set and VOF (CLSVOF), have been implemented and evaluated. The CLSVOF technique is adopted as the interface-tracking method in order to combine the advantages of LS and VOF methods. Due to the discontinuity of density and viscosity across the interface, simulations can become unstable due to numerical errors when a conventional discretisation approach is applied. Therefore, the governing equations are discretised here by introducing an extrapolated liquid velocity to minimise the interface momentum error, showing significant improvement in accuracy and robustness for simulations of primary breakup. For several reasons, single drop breakup in a uniform air flow is chosen as a benchmark test case for validation of the developed methodology for modelling atomisation. It is shown that the predicted drop breakup agrees quantitatively well with experiments for different Weber numbers. The solver is then applied to simulate primary breakup of liquid jets, which are more relevant to industrial applications. By simulating single round water jet atomisation in high-speed coaxial air flow, it is found that the predicted liquid core breakup lengths at different air/liquid velocities agree closely with measured data, but only when appropriate turbulent inflow conditions are specified. In simulations of liquid jet breakup in air crossflow, the penetration of the liquid jet is also well reproduced when turbulent inflows are used. In both simulations, it is found that the turbulence convected downstream from the injection nozzles affects significantly the primary breakup process, and the liquid turbulence rather than the gas turbulence plays a dominant role in initial disturbance of the liquid jet surface

    An experimental investigation of cavity flow

    Get PDF
    Of particular interest are the flow structure and dynamics associated with open shallow rectangular cavities at low Mach numbers for various length-to-depth ratios. At the Reynolds number investigated, it is the presence of convective instabilities through the process of feedback disturbance that gives rise to a globally unstable flowfield. Using an instrumental wing model with a cut-out an experimental investigation of a cavity flowfield exhibiting ‘fluid-dynamic’ phenomenon has been completed. A post-processing module for the PIV image data was constructed which optimised the data fidelity and accuracy while improving upon velocity spatial resolution. These improvements were necessary to capture the flow scales of interest and minimise the measurement error for the presentation of velocity, velocity-derivative and turbulent statistics. It is shown that the hydrodynamics that is intrinsic to the cavity flowfield at these inflow conditions organises the oscillation of small- and large-scale vortical structures. The impingent scenario at the downstream edge is seen to be crucially important to the cavity oscillation and during the mass addition phase a jet-edge is seen to form over the rear bulkhead and floor. In some instances this jet-like flow is observed to traverse the total internal perimeter of the cavity and interact with the shear layer at the leading edge of the cavity, this disturbs the normal growth of the shear layer and instigates an increase in fluctuation. The coexistence and interplay between a lower frequency mode dominant within the cavity zone and the shear layer mode is seen to shed large-scale eddies from the cavity. This modulation imposes a modification to the feedback signal strength such that two distinct states of the shear layer are noted. Concepts for the passive reduction of internal cavity fluctuation are successful although modifications to the shear layer unsteadiness are encountered; an increase in drag is implied

    Benchmarking of a Mobile Phone Particle Image Velocimetry System

    Get PDF
    One of the most important tools in a fluid dynamics laboratory is a particle image velocimetry (PIV) system. This system can measure the speed of a fluid flow simply by taking high-speed images of the motion of the fluid, then applying PIV cross-correlation software to calculate speed from the resulting images. The mI-PIV project is in the process of designing a new method of performing PIV by putting the cross-correlation software on a mobile phone application, called mobile Instructional PIV (mI-PIV). This system is an innovative stepping stone in making PIV systems more widely available. It is designed to be convenient and safe even for high school classrooms, which until now have had virtually no exposure to PIV due to its expensive, complex, and dangerous nature. This thesis will describe the examination of different aspects of the mI-PIV system, such as algorithms and illumination for imaging of the flow, and their separate effects on the accuracy of the system. Such a study serves to guide in the design process of mI-PIV as we strive to balance safety, simplicity, cost, and accuracy of the system. Using this process, we plan to create a real solution for making PIV a useful tool in high school classrooms, undergraduate laboratories, and potentially in industries where inexpensive, low-speed fluid velocity measurements are needed

    Control algorithms for large scale adaptive optics

    Get PDF
    In this dissertation, the problem of creating effective large scale Adaptive Optics (AO) systems control algorithms for the new generation of giant optical telescopes is addressed. The effectiveness of AO control algorithms is evaluated in several respects, such as computational complexity, compensation error rejection and robustness, i.e. reasonable insensitivity to the system imperfections. The results of this research are summarized as follows: 1. Robustness study of Sparse Minimum Variance Pseudo Open Loop Controller (POLC) for multi-conjugate adaptive optics (MCAO). The AO system model that accounts for various system errors has been developed and applied to check the stability and performance of the POLC algorithm, which is one of the most promising approaches for the future AO systems control. It has been shown through numerous simulations that, despite the initial assumption that the exact system knowledge is necessary for the POLC algorithm to work, it is highly robust against various system errors. 2. Predictive Kalman Filter (KF) and Minimum Variance (MV) control algorithms for MCAO. The limiting performance of the non-dynamic Minimum Variance and dynamic KF-based phase estimation algorithms for MCAO has been evaluated by doing Monte-Carlo simulations. The validity of simple near-Markov autoregressive phase dynamics model has been tested and its adequate ability to predict the turbulence phase has been demonstrated both for single- and multiconjugate AO. It has also been shown that there is no performance improvement gained from the use of the more complicated KF approach in comparison to the much simpler MV algorithm in the case of MCAO. 3. Sparse predictive Minimum Variance control algorithm for MCAO. The temporal prediction stage has been added to the non-dynamic MV control algorithm in such a way that no additional computational burden is introduced. It has been confirmed through simulations that the use of phase prediction makes it possible to significantly reduce the system sampling rate and thus overall computational complexity while both maintaining the system stable and effectively compensating for the measurement and control latencies
    • …
    corecore