159 research outputs found

    Secure, reliable and dynamic access to distributed clinical data

    Get PDF
    An abundance of statistical and scientific data exists in the area of clinical and epidemiological studies. Much of this data is distributed across regional, national and international boundaries with different policies on access and usage, and a multitude of different schemata for the data often complicated by the variety of supporting clinical coding schemes. This prevents the wide scale collation and analysis of such data as is often needed to infer clinical outcomes and to determine the often moderate effect of drugs. Through grid technologies it is possible to overcome the barriers introduced by distribution of heterogeneous data and services. However reliability, dynamicity and fine-grained security are essential in this domain, and are not typically offered by current grids. The MRC funded VOTES project (Virtual Organisations for Trials and Epidemiological Studies) has implemented a prototype infrastructure specifically designed to meet these challenges. This paper describes this on-going implementation effort and the lessons learned in building grid frameworks for and within a clinical environment

    Advancements in Enhancing Resilience of Electrical Distribution Systems: A Review on Frameworks, Metrics, and Technological Innovations

    Full text link
    This comprehensive review paper explores power system resilience, emphasizing its evolution, comparison with reliability, and conducting a thorough analysis of the definition and characteristics of resilience. The paper presents the resilience frameworks and the application of quantitative power system resilience metrics to assess and quantify resilience. Additionally, it investigates the relevance of complex network theory in the context of power system resilience. An integral part of this review involves examining the incorporation of data-driven techniques in enhancing power system resilience. This includes the role of data-driven methods in enhancing power system resilience and predictive analytics. Further, the paper explores the recent techniques employed for resilience enhancement, which includes planning and operational techniques. Also, a detailed explanation of microgrid (MG) deployment, renewable energy integration, and peer-to-peer (P2P) energy trading in fortifying power systems against disruptions is provided. An analysis of existing research gaps and challenges is discussed for future directions toward improvements in power system resilience. Thus, a comprehensive understanding of power system resilience is provided, which helps in improving the ability of distribution systems to withstand and recover from extreme events and disruptions

    An Efficient Scheme for Aggregation and Presentation of Network Performance

    Get PDF
    The Internet is presently being used to support increasingly complex interaction models as a result of more and more applications, services and frameworks becoming network centric. Efficient utilization of network and networked resources is of paramount importance. Network performance gathering is a precursor to any scheme that seeks to provide adaptive routing capabilities for interactions. In this paper we present a network performance aggregation framework that is extensible and appropriate for distributed messaging systems that span multiple realms, disparate communication protocols and support different applications

    Design and Implementation of Audio/Video Collaboration System Based on Publish/subscribe Event Middleware

    Get PDF
    In this paper we present our A/V collaboration system based on our XGSP collaboration framework and NaradaBrokering messaging middleware. Using publish/subscribe event model, this system can provide videoconferencing services to heterogeneous endpoints such as H.323, SIP and Access Grid. This paper discusses the common a/v collaboration model shared by all kinds of A/V conferencing clients and introduces the details about how to implement such a model based on publish/subscribe event middleware

    A Framework for Aggregating Network Performance in Distributed Brokering Systems

    Get PDF
    The Internet is presently being used to support increasingly complex interaction models as a result of more and more applications, services and frameworks becoming network-centric. Efficient utilization of network and networked resources is of paramount importance. Network performance gathering is a precursor to any scheme that seeks to provide adaptive routing capabilities for interactions. In this paper we present a network performance aggregation framework that is extensible and appropriate for distributed messaging systems that span multiple realms, disparate communication protocols and support different applications

    Service-Oriented Ad Hoc Grid Computing

    Get PDF
    Subject of this thesis are the design and implementation of an ad hoc Grid infrastructure. The vision of an ad hoc Grid further evolves conventional service-oriented Grid systems into a more robust, more flexible and more usable environment that is still standards compliant and interoperable with other Grid systems. A lot of work in current Grid middleware systems is focused on providing transparent access to high performance computing (HPC) resources (e.g. clusters) in virtual organizations spanning multiple institutions. The ad hoc Grid vision presented in this thesis exceeds this view in combining classical Grid components with more flexible components and usage models, allowing to form an environment combining dedicated HPC-resources with a large number of personal computers forming a "Desktop Grid". Three examples from medical research, media research and mechanical engineering are presented as application scenarios for a service-oriented ad hoc Grid infrastructure. These sample applications are also used to derive requirements for the runtime environment as well as development tools for such an ad hoc Grid environment. These requirements form the basis for the design and implementation of the Marburg ad hoc Grid Environment (MAGE) and the Grid Development Tools for Eclipse (GDT). MAGE is an implementation of a WSRF-compliant Grid middleware, that satisfies the criteria for an ad hoc Grid middleware presented in the introduction to this thesis. GDT extends the popular Eclipse integrated development environment by components that support application development both for traditional service-oriented Grid middleware systems as well as ad hoc Grid infrastructures such as MAGE. These development tools represent the first fully model driven approach to Grid service development integrated with infrastructure management components in service-oriented Grid computing. This thesis is concluded by a quantitative discussion of the performance overhead imposed by the presented extensions to a service-oriented Grid middleware as well as a discussion of the qualitative improvements gained by the overall solution. The conclusion of this thesis also gives an outlook on future developments and areas for further research. One of these qualitative improvements is "hot deployment" the ability to install and remove Grid services in a running node without interrupt to other active services on the same node. Hot deployment has been introduced as a novelty in service-oriented Grid systems as a result of the research conducted for this thesis. It extends service-oriented Grid computing with a new paradigm, making installation of individual application components a functional aspect of the application. This thesis further explores the idea of using peer-to-peer (P2P networking for Grid computing by combining a general purpose P2P framework with a standard compliant Grid middleware. In previous work the application of P2P systems has been limited to replica location and use of P2P index structures for discovery purposes. The work presented in this thesis also uses P2P networking to realize seamless communication accross network barriers. Even though the web service standards have been designed for the internet, the two-way communication requirement introduced by the WSRF-standards and particularly the notification pattern is not well supported by the web service standards. This defficiency can be answered by mechanisms that are part of such general purpose P2P communication frameworks. Existing security infrastructures for Grid systems focus on protection of data during transmission and access control to individual resources or the overall Grid environment. This thesis focuses on security issues within a single node of a dynamically changing service-oriented Grid environment. To counter the security threads arising from the new capabilities of an ad hoc Grid, a number of novel isolation solutions are presented. These solutions address security issues and isolation on a fine-grained level providing a range of applicable basic mechanisms for isolation, ranging from lightweight system call interposition to complete para-virtualization of the operating systems

    A grid and cloud-based framework for high throughput bioinformatics

    Get PDF
    Recent advances in genome sequencing technologies have unleashed a flood of new data. As a result, the computational analysis of bioinformatics data sets has been rapidly moving from a labbased desktop computer environment to exhaustive analyses performed by large dedicated computing resources. Traditionally, large computational problems have been performed on dedicated clusters of high performance machines that are typically local to, and owned by, a particular institution. The current trend in Grid computing has seen institutions pooling their computational resources in order to offload excess computational work to remote locations during busy periods. In the last year or so, commercial Cloud computing initiatives have matured enough to offer a viable remote source of reliable computational power. Collections of idle desktop computers have also been used as a source of computational power in the form of ‘volunteer Grids’. The field of bioinformatics is highly dynamic, with new or updated versions of software tools and databases continually being developed. Several different tools and datasets must often be combined into a coherent, automated workflow or pipeline. While existing solutions are available for constructing workflows, there is a clear need for long-lived analyses consisting of many interconnected steps to be able to migrate among Grid and cloud computational resources dynamically. This project involved research into the principles underlying the design and architecture of flexible, high-throughput bioinformatics processes. Following extensive research into requirements gathering, a novel Grid-based platform, Microbase, has been implemented that is based on service-oriented architectures and peer-to-peer data transfer technology. This platform has been shown to be amenable to utilising a wide range of hardware from commodity desktop computers, to high-performance cloud infrastructure. The system has been shown to drastically reduce the bandwidth requirements of bioinformatics data distribution, and therefore reduces both the financial and computational costs associated with cloud computing. The system is inherently modular in nature, comprising a service based notification system, a data storage system scheduler and a job manager. In keeping with e-Science principles, each module can operate in physical isolation from each other, distributed within an intranet or Internet. Moreover, since each module is loosely coupled via Web services, modules have the potential to be used in combination with external service oriented components or in isolation as part of another system. In order to demonstrate the utility of such an open source system to the bioinformatics community, a pipeline of inter-connected bioinformatics applications was developed using the Microbase system to form a high throughput application for the comparative and visual analysis of microbial genomes. This application, Automated Genome Analyser (AGA) has been developed to operate without user interaction. AGA exposes its results via Web-services which can be used by further analytical stages within Microbase, by external computational resources via a Web service interface or which can be queried by users via an interactive genome browser. In addition to providing the necessary infrastructure for scalable Grid applications, a modular development framework has been provided, which simplifies the process of writing Grid applications. Microbase has been adopted by a number of projects ranging from comparative genomics to synthetic biology simulations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modelling grid architecture.

    Get PDF
    This thesis evaluates software engineering methods, especially event modelling of distributed systems architecture, by applying them to specific data-grid projects. Other methods evaluated include requirements' analysis, formal architectural definition and discrete event simulation. A novel technique for matching architectural styles to requirements is introduced. Data-grids are a new class of networked information systems arising from e-science, itself an emergent method for computer-based collaborative research in the physical sciences. The tools used in general grid systems, which federate distributed resources, are reviewed, showing that they do not clearly guide architecture. The data-grid projects, which join heterogeneous data stores specifically, put required qualities at risk. Such risk of failure is mitigated in the EGSO and AstroGrid solar physics data-grid projects' designs by modelling. Design errors are trapped by rapidly encoding and evaluating informal concepts, architecture, component interaction and objects. The success of software engineering modelling techniques depends on the models' accuracy, ability to demonstrate the required properties, and clarity (so project managers and developers can act on findings). The novel formal event modelling language chosen, FSP, meets these criteria at the diverse early lifecycle stages (unlike some techniques trialled). Models permit very early testing, finding hidden complexity, gaps in designed protocols and risks of unreliability. However, simulation is shown to be more suitable for evaluating qualities like scalability, which emerge when there are many component instances. Design patterns (which may be reused in other data-grids to resolve commonly encountered challenges) are exposed in these models. A method for generating useful models rapidly, introducing the strength of iterative lifecycles to sequential projects, also arises. Despite reported resistance to innovation in industry, the software engineering techniques demonstrated may benefit commercial information systems too
    corecore