4,735 research outputs found

    Evaluation of local orientation for texture classification

    Get PDF
    The aim of this paper is to present a study where we evaluate the optimal inclusion of the texture orientation in the classification process. In this paper the orientation for each pixel in the image is extracted using the partial derivatives of the Gaussian function and the main focus of our work is centred on the evaluation of the local dominant orientation (which is calculated by combining the magnitude and local orientation) on the classification results. While the dominant orientation of the texture depends strongly on the observation scale, in this paper we propose to evaluate the macro-texture by calculating the distribution of the dominant orientations for all pixels in the image that sample the texture at micro-level. The experimental results were conducted on standard texture databases and the results indicate that the dominant orientation calculated at micro-level is an appropriate measure for texture description

    A Neural Network Model for Cursive Script Production

    Full text link
    This article describes a neural network model, called the VITEWRITE model, for generating handwriting movements. The model consists of a sequential controller, or motor program, that interacts with a trajectory generator to move a. hand with redundant degrees of freedom. The neural trajectory generator is the Vector Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint movements. VITE properties enable a simple control strategy to generate complex handwritten script if the hand model contains redundant degrees of freedom. The proposed controller launches transient directional commands to independent hand synergies at times when the hand begins to move, or when a velocity peak in a given synergy is achieved. The VITE model translates these temporally disjoint synergy commands into smooth curvilinear trajectories among temporally overlapping synergetic movements. The separate "score" of onset times used in most prior models is hereby replaced by a self-scaling activity-released "motor program" that uses few memory resources, enables each synergy to exhibit a unimodal velocity profile during any stroke, generates letters that are invariant under speed and size rescaling, and enables effortless. connection of letter shapes into words. Speed and size rescaling are achieved by scalar GO and GRO signals that express computationally simple volitional commands. Psychophysical data concerning band movements, such as the isochrony principle, asymmetric velocity profiles, and the two-thirds power law relating movement curvature and velocity arise as emergent properties of model interactions.National Science Foundation (IRI 90-24877, IRI 87-16960); Office of Naval Research (N00014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499); Defense Advanced Research Projects Agency (90-0083
    • …
    corecore