126 research outputs found

    OLTP on Hardware Islands

    Get PDF
    Modern hardware is abundantly parallel and increasingly heterogeneous. The numerous processing cores have non-uniform access latencies to the main memory and to the processor caches, which causes variability in the communication costs. Unfortunately, database systems mostly assume that all processing cores are the same and that microarchitecture differences are not significant enough to appear in critical database execution paths. As we demonstrate in this paper, however, hardware heterogeneity does appear in the critical path and conventional database architectures achieve suboptimal and even worse, unpredictable performance. We perform a detailed performance analysis of OLTP deployments in servers with multiple cores per CPU (multicore) and multiple CPUs per server (multisocket). We compare different database deployment strategies where we vary the number and size of independent database instances running on a single server, from a single shared-everything instance to fine-grained shared-nothing configurations. We quantify the impact of non-uniform hardware on various deployments by (a) examining how efficiently each deployment uses the available hardware resources and (b) measuring the impact of distributed transactions and skewed requests on different workloads. Finally, we argue in favor of shared-nothing deployments that are topology- and workload-aware and take advantage of fast on-chip communication between islands of cores on the same socket.Comment: VLDB201

    High Performance Transaction Processing on Non-Uniform Hardware Topologies

    Get PDF
    Transaction processing is a mission critical enterprise application that runs on high-end servers. Traditionally, transaction processing systems have been designed for uniform core-to-core communication latencies. In the past decade, with the emergence of multisocket multicores, for the first time we have Islands, i.e., groups of cores that communicate fast among themselves and slower with other groups. In current mainstream servers, each multicore processor corresponds to an Island. As the number of cores on a chip increases, however, we expect that multiple Islands will form within a single processor in the nearby future. In addition, the access latencies to the local memory and to the memory of another server over fast interconnect are converging, thus creating a hierarchy of Islands within a group of servers. Non-uniform hardware topologies pose a significant challenge to the scalability and the predictability of performance of transaction processing systems. Distributed transaction processing systems can alleviate this problem; however, no single deployment configuration is optimal for all workloads and hardware topologies. In order to fully utilize the available processing power, a transaction processing system needs to adapt to the underlying hardware topology and tune its configuration to the current workload. More specifically, the system should be able to detect any changes to the workload and hardware topology, and adapt accordingly without disrupting the processing. In this thesis, we first systematically quantify the impact of hardware Islands on deployment configurations of distributed transaction processing systems. We show that none of these configurations is optimal for all workloads, and the choice of the optimal configuration depends on the combination of the workload and hardware topology. In the cluster setting, on the other hand, the choice of optimal configuration additionally depends on the properties of the communication channel between the servers. We address this challenge by designing a dynamic shared-everything system that adapts its data structures automatically to hardware Islands. To ensure good performance in the presence of shifting workload patterns, we use a lightweight partitioning and placement mechanism to balance the load and minimize the synchronization overheads across Islands. Overall, we show that masking the non-uniformity of inter-core communication is critical for achieving predictably high performance for latency-sensitive applications, such as transaction processing. With clusters of a handful of multicore chips with large main memories replacing high-end many-socket servers, the deployment rules of thumb identified in our analysis have a potential to significantly reduce the synchronization and communication costs of transaction processing. As workloads become more dynamic and diverse, while still running on partitioned infrastructure, the lightweight monitoring and adaptive repartitioning mechanisms proposed in this thesis will be applicable to a wide range of designs for which traditional offline schemes are impractical

    Characterization of the Impact of Hardware Islands on OLTP

    Get PDF
    Modern hardware is abundantly parallel and increasingly heterogeneous. The numerous processing cores have non-uniform access latencies to the main memory and processor caches, which causes variability in the communication costs. Unfortunately, database systems mostly assume that all processing cores are the same and that microarchitecture differences are not significant enough to appear in critical database execution paths. As we demonstrate in this paper, however, non-uniform core topology does appear in the critical path and conventional database architectures achieve suboptimal and even worse, unpredictable performance. We perform a detailed performance analysis of OLTP deployments in servers with multiple cores per CPU (multicore) and multiple CPUs per server (multisocket). We compare different database deployment strategies where we vary the number and size of independent database instances running on a single server, from a single shared-everything instance to fine-grained shared-nothing configurations. We quantify the impact of non-uniform hardware on various deployments by (a) examining how efficiently each deployment uses the available hardware resources and (b) measuring the impact of distributed transactions and skewed requests on different workloads. We show that no strategy is optimal for all cases and that the best choice depends on the combination of hardware topology and workload characteristics. Finally, we argue that transaction processing systems must be aware of the hardware topology in order to achieve predictably high performance

    S-Store: Streaming Meets Transaction Processing

    Get PDF
    Stream processing addresses the needs of real-time applications. Transaction processing addresses the coordination and safety of short atomic computations. Heretofore, these two modes of operation existed in separate, stove-piped systems. In this work, we attempt to fuse the two computational paradigms in a single system called S-Store. In this way, S-Store can simultaneously accommodate OLTP and streaming applications. We present a simple transaction model for streams that integrates seamlessly with a traditional OLTP system. We chose to build S-Store as an extension of H-Store, an open-source, in-memory, distributed OLTP database system. By implementing S-Store in this way, we can make use of the transaction processing facilities that H-Store already supports, and we can concentrate on the additional implementation features that are needed to support streaming. Similar implementations could be done using other main-memory OLTP platforms. We show that we can actually achieve higher throughput for streaming workloads in S-Store than an equivalent deployment in H-Store alone. We also show how this can be achieved within H-Store with the addition of a modest amount of new functionality. Furthermore, we compare S-Store to two state-of-the-art streaming systems, Spark Streaming and Storm, and show how S-Store matches and sometimes exceeds their performance while providing stronger transactional guarantees

    Efficient Load Balancing for Cloud Computing by Using Content Analysis

    Get PDF
    Nowadays, computer networks have grown rapidly due to the demand for information technology management and facilitation of greater functionality. The service provided based on a single machine cannot accommodate large databases. Therefore, single servers must be combined for server group services. The problem in grouping server service is that it is very hard to manage many devices which have different hardware. Cloud computing is an extensive scalable computing infrastructure that shares existing resources. It is a popular option for people and businesses for a number of reasons including cost savings and security. This paper aimed to propose an efficient technique of load balance control by using HA Proxy in cloud computing with the objective of receiving and distributing the workload to the computer server to share the processing resources. The proposed technique applied round-robin scheduling for an efficient resource management of the cloud storage systems that focused on an effective workload balancing and a dynamic replication strategy. The evaluation approach was based on the benchmark data from requests per second and failed requests. The results showed that the proposed technique could improve performance of load balancing by 1,000 request /6.31 sec in cloud computing and generate fewer false alarm

    Parallel Architectures and Parallel Algorithms for Integrated Vision Systems

    Get PDF
    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems

    Fast transactions for multicore in-memory databases

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 55-57).Though modern multicore machines have sufficient RAM and processors to manage very large in-memory databases, it is not clear what the best strategy for dividing work among cores is. Should each core handle a data partition, avoiding the overhead of concurrency control for most transactions (at the cost of increasing it for cross-partition transactions)? Or should cores access a shared data structure instead? We investigate this question in the context of a fast in-memory database. We describe a new transactionally consistent database storage engine called MAFLINGO. Its cache-centered data structure design provides excellent base key-value store performance, to which we add a new, cache-friendly serializable protocol and support for running large, read-only transactions on a recent snapshot. On a key-value workload, the resulting system introduces negligible performance overhead as compared to a version of our system with transactional support stripped out, while achieving linear scalability versus the number of cores. It also exhibits linear scalability on TPC-C, a popular transactional benchmark. In addition, we show that a partitioning-based approach ceases to be beneficial if the database cannot be partitioned such that only a small fraction of transactions access multiple partitions, making our shared-everything approach more relevant. Finally, based on a survey of results from the literature, we argue that our implementation substantially outperforms previous main-memory databases on TPC-C benchmarks.by Stephen Lyle Tu.S.M
    • …
    corecore