1,339 research outputs found

    Design and Implementation of FPGA-based Hardware Accelerator for Bayesian Confidence Propagation Neural Network

    Get PDF
    The Bayesian confidence propagation neural network (BCPNN) has been widely used for neural computation and machine learning domains. However, the current implementations of BCPNN are not computationally efficient enough, especially in the update of synaptic state variables. This thesis proposes a hardware accelerator for the training and inference process of BCPNN. In the hardware design, several techniques are employed, including a hybrid update mechanism, customized LUT-based design for exponential operations, and optimized design that maximizes parallelism. The proposed hardware accelerator is implemented on an FPGA device. The results show that the computing speed of the accelerator can improve the CPU counterpart by two orders of magnitude. In addition, the computational modules of the accelerator can be reused to reduce hardware overheads while achieving comparable computing performance. The accelerator's potential to facilitate the efficient implementation for large-scale BCPNN neural networks opens up the possibility to realize higher-level cognitive phenomena, such as associative memory and working memory

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Parallel computing for brain simulation

    Get PDF
    [Abstract] Background: The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. Aims: For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. Conclusion: This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing.Galicia. ConsellerĂ­a de Cultura, EducaciĂłn e OrdenaciĂłn Universitaria; GRC2014/049Galicia. ConsellerĂ­a de Cultura, EducaciĂłn e OrdenaciĂłn Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Fast and deep: energy-efficient neuromorphic learning with first-spike times

    Get PDF
    For a biological agent operating under environmental pressure, energy consumption and reaction times are of critical importance. Similarly, engineered systems also strive for short time-to-solution and low energy-to-solution characteristics. At the level of neuronal implementation, this implies achieving the desired results with as few and as early spikes as possible. In the time-to-first-spike-coding framework, both of these goals are inherently emerging features of learning. Here, we describe a rigorous derivation of learning such first-spike times in networks of leaky integrate-and-fire neurons, relying solely on input and output spike times, and show how it can implement error backpropagation in hierarchical spiking networks. Furthermore, we emulate our framework on the BrainScaleS-2 neuromorphic system and demonstrate its capability of harnessing the chip's speed and energy characteristics. Finally, we examine how our approach generalizes to other neuromorphic platforms by studying how its performance is affected by typical distortive effects induced by neuromorphic substrates.Comment: 20 pages, 8 figure

    Neuromorphic Models of the Amygdala with Applications to Spike Based Computing and Robotics

    Get PDF
    Computational neural simulations do not match the functionality and operation of the brain processes they attempt to model. This gap exists due to both our incomplete understanding of brain function and the technological limitations of computers. Moreover, given that the shrinking of transistors has reached its physical limit, fundamentally different computer paradigms are needed to help bridge this gap. Neuromorphic hardware technologies attempt to abstract the form of brain function to provide a computational solution post-Moore’s Law, and neuromorphic algorithms provide software frameworks to increase biological plausibility within neural models. This dissertation focuses on utilizing neuromorphic frameworks to better understand how the brain processes social and emotional stimuli. It describes the creation of a spiking-neuron computational model of the amygdala, the brain region behind our social interactions, and the simulation of the model using brain-inspired computer hardware, as well as the implementations of other spike-based computations on these hardwares. Although scientists agree that the amygdala is the main component of the social brain, few models exist to explain amygdala function beyond “fight or flight”. This model incorporates neuroscientists’ more nuanced understanding of the amygdala, and is validated by comparing the neural responses measured from the model to responses measured in primate amygdalae under the same experimental conditions. This model will inform future physiological experiments, which will generate deeper neuroscientific insights, which will in turn allow for better neural models. Repeated iteratively, this positive feedback loop in which better models beget better under- standing of biology and vice versa will help close the gap between the computer and the brain. The computer networks and hardware that emerge from this process have the potential to achieve higher computing efficiency, approaching or perhaps surpassing the efficiency of the human brain; provide the foundation for new approaches to artificial intelligence and machine learning within a spike-based computing paradigm; and widen our understanding of brain function
    • …
    corecore