466 research outputs found

    Distributed Time Division Multiple Access (DTDMA) Medium Access Control Protocol For Wireless Sensor Networks [TK7872.D48 W872 2008 f rb].

    Get PDF
    Rangkaian sensor tanpa wayar menerima perhatian yang memberangsangkan sejak beberapa tahun yang lalu disebabkan oleh peningkatan permintaan terhadap perisian kadar rendah, murah dan menjimatkan tenaga seperti operasi perkilangan, ketenteraan, kesihatan, pengawasan alam sekitar, sekuriti, operasi penyelamatan dan komunikasi tanpa wayar. Wireless Sensor Networks (WSNs) received tremendous attention over the last few years due to increasing demand for low data rate, low-cost and low power applications in industries like factory automation, military, health and hospitality,environment monitoring, security, search and rescue, and wireless communications

    Extensions to the IEEE 802.11 TSF for Efficient and Reliable Network Synchronization in Large Scale MANETs

    Full text link
    Designing new protocols for Mobile Ad hoc Networks (MANETs) is a great challenge due to their distributed and self organized nature. Though, aspects of approved algorithms for hierarchical topographies may be carried over to these flat networks. The IEEE 802.11 protocol supports ad hoc networks in small scale applications, but its performance in large scale environments is still under investigation. Besides the Distributed Coordination Function (DCF), the Timer Synchronization Function (TSF) can be significantly improved in order to increase the performance in large scale multihop networks. This article presents systematic extensions to the TSF that allow increasing the overall reliability and disburdening the network at the same time. The presented scheme may be tailored to specific applications and even supports mobile stations and herewith MANETs

    Random Broadcast Based Distributed Consensus Clock Synchronization for Mobile Networks

    Get PDF
    Clock synchronization is a crucial issue for mobile ad hoc networks due to the dynamic and distributed nature of these networks. In this paper, employing affine models for local clocks, a random broadcast based distributed consensus clock synchronization algorithm is proposed. In the absence of transmission delays, we theoretically prove the convergence of the proposed scheme, which is further illustrated by numerical results. In addition, it is concluded from simulations that the proposed scheme is scalable and robust to transmission delays as well as different accuracy requirements

    Performance and energy efficiency in wireless self-organized networks

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Distributed Time Division Multiple Access (Dtdma) Medium Access Control Protocol For Wireless Sensor Networks

    Get PDF
    Rangkaian sensor tanpa wayar menerima perhatian yang memberangsangkan sejak beberapa tahun yang lalu Wireless Sensor Networks (WSNs) received tremendous attention over the last few years due to increasing demand for low data rat

    Extensions to the IEEE 802.11 TSF for Efficient and Reliable Network Synchronization in Large Scale MANETs

    Get PDF
    Abstract-Designing new protocols for Mobile Ad hoc Networks (MANETs) is a great challenge due to their distributed and self organized nature. Though, aspects of approved algorithms for hierarchical topographies may be carried over to these flat networks. The IEEE 802.11 protocol supports ad hoc networks in small scale applications, but its performance in large scale environments is still under investigation. Besides the Distributed Coordination Function (DCF), the Timer Synchronization Function (TSF) can be significantly improved in order to increase the performance in large scale multihop networks. This paper presents systematic extensions to the TSF that allow increasing the overall reliability and disburdening the network load at the same time. The presented scheme may be tailored to specific applications and even supports mobile stations and herewith MANETs

    Extensions to the IEEE 802.11 TSF for Efficient and Reliable Network Synchronization in Large Scale MANETs

    Full text link
    Designing new protocols for Mobile Ad hoc Networks (MANETs) is a great challenge due to their distributed and self organized nature. Though, aspects of approved algorithms for hierarchical topographies may be carried over to these flat networks. The IEEE 802.11 protocol supports ad hoc networks in small scale applications, but its performance in large scale environments is still under investigation. Besides the Distributed Coordination Function (DCF), the Timer Synchronization Function (TSF) can be significantly improved in order to increase the performance in large scale multihop networks. This paper presents systematic extensions to the TSF that allow increasing the overall reliability and disburdening the network load at the same time. The presented scheme may be tailored to specific applications and even supports mobile stations and herewith MANETs

    System Development for Geolocation in Harsh Environments

    Get PDF
    Wireless sensor networks (WSN) consist of a set of distributed devices equipped with multiple sensors, which can be employed in different environments of varying characteristics. Nowadays, node localization has become one of their most basic and important requirements. Due to the nature of certain environments, typical positioning systems, such as Global Navigation Satellite System (GNSS), cannot be employed. Therefore, in recent years several alternative positioning mechanisms have risen. ROMOVI is a project which has as its main goal the development of low cost autonomous robots capable of monitoring and perform logistic tasks on the steep slopes of the Douro river vineyards. Integrated in this project, this dissertation proposes the development of a full-custom wireless communication system for geolocation purposes in harsh environments. Using a Symmetric Double Sided Two Way Ranging (SDS-TWR) algorithm, it is possible to achieve ranging measures between nodes, thus providing accurate relative positioning. This work focuses mainly on the study of the SDS-TWR algorithm and its major error sources, such as those due to digital clock drift, among others. A preamble based on Frank-Zadoff-Chu sequence was developed and, due to its good periodic autocorrelation properties, a system employing the transmission and reception of this preamble was implemented in hardware, through a field programmable gate array (FPGA). By employing an embedded logic processor, the Altera Nios II, control over the complete procedure of the aforementioned algorithm is possible, to perform and analyze the main advantages of the SDS-TWR algorithm. Finally, a medium access control (MAC) layer frame format was defined, in order to enable future development of communication among multiple nodes, to enhance the original algorithm and, as such, provide the capability of trilateration
    corecore