1,316 research outputs found

    Big Networks: Analysis and Optimal Control

    Get PDF
    The study of networks has seen a tremendous breed of researches due to the explosive spectrum of practical problems that involve networks as the access point. Those problems widely range from detecting functionally correlated proteins in biology to finding people to give discounts and gain maximum popularity of a product in economics. Thus, understanding and further being able to manipulate/control the development and evolution of the networks become critical tasks for network scientists. Despite the vast research effort putting towards these studies, the present state-of-the-arts largely either lack of high quality solutions or require excessive amount of time in real-world `Big Data\u27 requirement. This research aims at affirmatively boosting the modern algorithmic efficiency to approach practical requirements. That is developing a ground-breaking class of algorithms that provide simultaneously both provably good solution qualities and low time and space complexities. Specifically, I target the important yet challenging problems in the three main areas: Information Diffusion: Analyzing and maximizing the influence in networks and extending results for different variations of the problems. Community Detection: Finding communities from multiple sources of information. Security and Privacy: Assessing organization vulnerability under targeted-cyber attacks via social networks

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Using Physical and Social Sensors in Real-Time Data Streaming for Natural Hazard Monitoring and Response

    Get PDF
    Technological breakthroughs in computing over the last few decades have resulted in important advances in natural hazards analysis. In particular, integration of a wide variety of information sources, including observations from spatially-referenced physical sensors and new social media sources, enables better estimates of real-time hazard. The main goal of this work is to utilize innovative streaming algorithms for improved real-time seismic hazard analysis by integrating different data sources and processing tools into cloud applications. In streaming algorithms, a sequence of items from physical and social sensors can be processed in as little as one pass with no need to store the data locally. Massive data volumes can be analyzed in near-real time with reasonable limits on storage space, an important advantage for natural hazard analysis. Seismic hazard maps are used by policymakers to set earthquake resistant construction standards, by insurance companies to set insurance rates and by civil engineers to estimate stability and damage potential. This research first focuses on improving probabilistic seismic hazard map production. The result is a series of maps for different frequency bands at significantly increased resolution with much lower latency time that includes a range of high-resolution sensitivity tests. Second, a method is developed for real-time earthquake intensity estimation using joint streaming analysis from physical and social sensors. Automatically calculated intensity estimates from physical sensors such as seismometers use empirical relationships between ground motion and intensity, while those from social sensors employ questionaries that evaluate ground shaking levels based on personal observations. Neither is always sufficiently precise and/or timely. Results demonstrate that joint processing can significantly reduce the response time to a damaging earthquake and estimate preliminary intensity levels during the first ten minutes after an event. The combination of social media and network sensor data, in conjunction with innovative computing algorithms, provides a new paradigm for real-time earthquake detection, facilitating rapid and inexpensive risk reduction. In particular, streaming algorithms are an efficient method that addresses three major problems in hazard estimation by improving resolution, decreasing processing latency to near real-time standards and providing more accurate results through the integration of multiple data sets

    3rd EGEE User Forum

    Get PDF
    We have organized this book in a sequence of chapters, each chapter associated with an application or technical theme introduced by an overview of the contents, and a summary of the main conclusions coming from the Forum for the chapter topic. The first chapter gathers all the plenary session keynote addresses, and following this there is a sequence of chapters covering the application flavoured sessions. These are followed by chapters with the flavour of Computer Science and Grid Technology. The final chapter covers the important number of practical demonstrations and posters exhibited at the Forum. Much of the work presented has a direct link to specific areas of Science, and so we have created a Science Index, presented below. In addition, at the end of this book, we provide a complete list of the institutes and countries involved in the User Forum

    A General Framework for Motion Sensor Based Web Services

    Get PDF
    With the development of motion sensing technology, motion sensor based services have been put into a wide range of applications in recent years. Demand of consuming such service on mobile devices has already emerged. However, as most motion sensors are specifically designed for some heavyweight clients such as PCs or game consoles, there are several technical challenges prohibiting motion sensor from being used by lightweight clients such as mobile devices, for example: There is no direct approach to connect the motion sensor with mobile devices. Most mobile devices don't have enough computational power to consume the motion sensor outputs. To address these problems, I have designed and implemented a framework for publishing general motion sensor functionalities as a RESTful web service that is accessible to mobile devices via HTTP connections. In the framework, a pure HTML5 based interface is delivered to the clients to ensure good accessibility, a websocket based data transferring scheme is adopted to guarantee data transferring efficiency, a server side gesture pipeline is proposed to reduce the client side computational burden and a distributed architecture is designed to make the service scalable. Finally, I conducted three experiments to evaluate the framework's compatibility, scalability and data transferring performance

    Un modèle de trafic adapté à la volatilité de charge d'un service de vidéo à la demande: Identification, validation et application à la gestion dynamique de ressources.

    Get PDF
    Dynamic resource management has become an active area of research in the Cloud Computing paradigm. Cost of resources varies significantly depending on configuration for using them. Hence efficient management of resources is of prime interest to both Cloud Providers and Cloud Users. In this report we suggest a probabilistic resource provisioning approach that can be exploited as the input of a dynamic resource management scheme. Using a Video on Demand use case to justify our claims, we propose an analytical model inspired from standard models developed for epidemiology spreading, to represent sudden and intense workload variations. As an essential step we also derive a heuristic identification procedure to calibrate all the model parameters and evaluate the performance of our estimator on synthetic time series. We show how good can our model fit to real workload traces with respect to the stationary case in terms of steady-state probability and autocorrelation structure. We find that the resulting model verifies a Large Deviation Principle that statistically characterizes extreme rare events, such as the ones produced by "buzz effects" that may cause workload overflow in the VoD context. This analysis provides valuable insight on expectable abnormal behaviors of systems. We exploit the information obtained using the Large Deviation Principle for the proposed Video on Demand use-case for defining policies (Service Level Agreements). We believe these policies for elastic resource provisioning and usage may be of some interest to all stakeholders in the emerging context of cloud networking.La gestion dynamique de ressources est un élément clé du paradigme de cloud computing et plus récemment de celui de cloud networking. Dans ce contexte d'infrastructures virtualisées, la réduction des coûts associés à l'utilisation et à la ré-allocation des ressources contraint les opé- rateurs et les utilisateurs de clouds à une gestion rationnelle de celles-ci. Dans ce travail nous proposons une description probabiliste des besoins liée à la volatilité de la charge d'un service de distribution de vidéos à la demande. Cette description peut alors servir de consigne (input) à la provision et à l'allocation dynamique des ressources nécessaires. Notre approche repose sur la construction d'un modèle stochastique inspiré des modèles de Markov standards de propaga- tion épidémiologique, capable de reproduire des variations soudaines et intenses d'activité (buzz). Nous proposons alors une procédure heuristique d'identification du modèle à partir de séries tem- porelles du nombre d'utilisateurs connectés au serveur. Les performances d'estimation de chacun des paramètres du modèle sont évaluées numériquement, et nous vérifions l'adéquation du modèle aux données en comparant les distributions des états stationnaires ainsi que les fonctions d'auto- corrélation des processus. Les propriétés markoviennes de notre modèle garantissent qu'il vérifie un principe de grandes dé- viations permettant de caractériser statistiquement l'ampleur et la durée d'évènements extrêmes et rares tels que ceux produits par les buzzs. C'est cette propriété que nous exploitons pour di- mensionner le volume de ressources (e.g. bande-passante, nombre de serveurs, taille de buffers) à prévoir pour réaliser un bon compromis entre coût de re-déploiement des infrastructures et qualité de service. Cette approche probabiliste de la gestion des ressources ouvre des perspectives sur les politiques de Service Level Agreement adaptées aux clouds et servant au mieux les intérêts des opérateurs de réseaux, de services et de leurs clients

    Designing algorithms for big graph datasets : a study of computing bisimulation and joins

    Get PDF

    Fast algorithm for real-time rings reconstruction

    Get PDF
    The GAP project is dedicated to study the application of GPU in several contexts in which real-time response is important to take decisions. The definition of real-time depends on the application under study, ranging from answer time of ÎĽs up to several hours in case of very computing intensive task. During this conference we presented our work in low level triggers [1] [2] and high level triggers [3] in high energy physics experiments, and specific application for nuclear magnetic resonance (NMR) [4] [5] and cone-beam CT [6]. Apart from the study of dedicated solution to decrease the latency due to data transport and preparation, the computing algorithms play an essential role in any GPU application. In this contribution, we show an original algorithm developed for triggers application, to accelerate the ring reconstruction in RICH detector when it is not possible to have seeds for reconstruction from external trackers

    Reconfigurable computing for large-scale graph traversal algorithms

    Get PDF
    This thesis proposes a reconfigurable computing approach for supporting parallel processing in large-scale graph traversal algorithms. Our approach is based on a reconfigurable hardware architecture which exploits the capabilities of both FPGAs (Field-Programmable Gate Arrays) and a multi-bank parallel memory subsystem. The proposed methodology to accelerate graph traversal algorithms has been applied to three case studies, revealing that application-specific hardware customisations can benefit performance. A summary of our four contributions is as follows. First, a reconfigurable computing approach to accelerate large-scale graph traversal algorithms. We propose a reconfigurable hardware architecture which decouples computation and communication while keeping multiple memory requests in flight at any given time, taking advantage of the high bandwidth of multi-bank memory subsystems. Second, a demonstration of the effectiveness of our approach through two case studies: the breadth-first search algorithm, and a graphlet counting algorithm from bioinformatics. Both case studies involve graph traversal, but each of them adopts a different graph data representation. Third, a method for using on-chip memory resources in FPGAs to reduce off-chip memory accesses for accelerating graph traversal algorithms, through a case-study of the All-Pairs Shortest-Paths algorithm. This case study has been applied to process human brain network data. Fourth, an evaluation of an approach based on instruction-set extension for FPGA design against many-core GPUs (Graphics Processing Units), based on a set of benchmarks with different memory access characteristics. It is shown that while GPUs excel at streaming applications, the proposed approach can outperform GPUs in applications with poor locality characteristics, such as graph traversal problems.Open Acces
    • …
    corecore