386 research outputs found

    Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.Peer ReviewedPostprint (author's final draft

    Control-oriented model of a membrane humidifier for fuel cell applications

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Improving the humidification of polymer electrolyte membrane fuel-cells (PEMFC) is essential to optimize its performance and stability. Therefore, this paper presents an experimentally validated model of a low temperature PEMFC cathode humidifier for control/observation design purposes. A multi-input/multi-output non-linear fourth order model is derived, based on the mass and heat dynamics of circulating air. In order to validate the proposed model and methodology, experimental results are provided. Finally, a non-linear control strategy based on second order sliding mode is designed and analyzed in order to show suitability and usefulness of the approach.Peer ReviewedPostprint (author's final draft

    A gain-scheduled LPV control for oxygen stoichiometry regulation in PEM fuel cell systems

    Get PDF
    The article addresses the LPV control of a Polymer Electrolyte Membrane Fuel Cell (PEMFC). In order to optimize efficiency, PEMFCs require reliable control systems ensuring stability and performance, as well as robustness to model uncertainties and external perturbations. On the other hand, PEMFCs present a highly nonlinear behavior that demands nonlinear and/or adaptive control strategies to achieve high performance in the entire operating range. Here, a linear parameter varying (LPV) gain scheduled control is proposed. The control is based on a piecewise affine LPV representation of the PEMFC, a model that can be available in practice. In order to deal with the saturation of the control action, an LPV anti-windup compensation is also proposed. The complete control strategy is applied to several experimental practical situations in a laboratory fuel cell system to evaluate its performance and the reliability of the proposed algorithms.The research of F.D. Bianchi was supported by the European Regional Development Funds (ERDF, FEDER Programa Competitivitat de Catalunya 2007-2013). The research of C. Kunusch has been supported by the Seventh Framework Programme of the European Community through the Marie Curie actions (GA: PCIG09-GA-2011-293876) and project Puma-Mind (GA: FCH-JU-2011-1-303419), as well as by the CICYT project DPI2011-25649 (MICINN-Spain). The research of C. Ocampo-Martinez has been supported by the project MACPERCON (Ref. 201250E027) of the CSIC. The research of R.S. Sánchez Peña has been supported by CONICET and grant PICT2008-290 from the PRH Program of the Ministry of Science, Technology and Innovation of Argentina.Peer Reviewe

    Fast dynamic control for a boost DC/DC converter in hybrid-electric powertrain with PEM fuel cell and battery pack

    Get PDF
    When working with hybrid-electric powertrain with a proton exchange membrane fuel cell (PEMFC) along with a battery pack, to increase the life of the PEMFC and avoid a drop of performance it needs to be periodically short circuited. The periodic short circuit of the PEMFC requires the DC/DC converter to be decoupled from the PEMFC. This behaviour leads the converter to undergo several start-up transients, and for an optimal energy management, the converter must reach its reference steady-state condition as quickly as possible. In this frame, this paper presents an innovative dynamic control for current mode operations of a boost DC/DC converter for managing the power exchange between the fuel cell and the battery pack, which could be easily implemented in industrial applications. With the proposed control system, the converter achieves faster step response when turned on, reducing the time required by the controlled current to reach its set point. To support theoretical considerations and simulations results, an experimental validation has been performed with a real system prototype

    A standalone proton exchange membrane fuel cell generation system with different tracking techniques

    Get PDF
    The proton exchange membrane fuel cell (PEMFC) may be operated at the maximum power point (MPP) or maximum efficiency point (MEP). In this thesis, a complete user-friendly Simulink model of the PEMFC is developed to implement the maximum power point tracking (MPPT) technique and maximum efficiency point tracking (MEPT) technique. A new tracking technique referred to as the midpoint tracking (MDT) technique, is proposed to overcome the limitations of the MPPT and MEPT techniques. A detailed analysis of the tracking techniques based on simulation results using the Ballard MK5-E PEMFC as reference is presented. Simulation results indicate that the midpoint tracking technique provides a trade-off operation with acceptable efficiency derating of 15%, high output power, and small size of the fuel cell when compared with the maximum efficiency point tracking technique. In order to analyse the effects of the tracking techniques on the PEMFC system economics, a detailed economic analysis for ten different cases of standalone PEMFC system is carried out. From the point of view of the economics of a standalone fuel cell generation system, it is found that the MPPT technique is suitable for low power applications (<50kW) and MDT technique is suitable for medium to high power applications. Finally, based on the particular requirements of stationary PEMFC application, suitable tracking techniques are suggested

    Analysis of the performance of a passive hybrid powerplant to power a lightweight unmanned aerial vehicle for a high altitude mission

    Get PDF
    The objective of this research is to analyze the performance of a passive hybrid powerplant control system to be implemented in a lightweight unmanned aerial vehicle capable to ascend up to the high troposphere (10, 000 m). The powerplant is based on a high-temperature PEM fuel cell connected in parallel to a set of lithium-polymer batteries and regulated by two power diodes. Test performed in steady state demonstrates that the use of the hybrid system increases the efficiency of the stack by more than 7% because the voltage at the main DC bus is limited by the batteries. The robustness of the passive control system is proved in a long-term test in which random perturbations of ±15% are applied to the average power that would be demanded during the ascent flight. The hybridization of the stack with the batteries eliminates sudden peaks in the current generated by the stack, which are responsible for prompt degradation phenomena that drastically reduce its useful lifetime. The study demonstrates that with the passive hybrid powerplant it is possible to reach the target height with the gas storage system considered in the application, contrary to what happens with the simple power plant

    Clean Energy Systems and Experiences

    Get PDF
    This book reports the latest developments and trends in "clean energy systems and experiences". The contributors to each chapter are energy scientists and engineers with strong expertise in their respective fields. This book offers a forum for exchanging state of the art scientific information and knowledge. As a whole, the studies presented here reveal important new directions toward the realization of a sustainable society

    Modeling and control of PEM fuel cells

    Get PDF
    Aplicat embargament des del moment de la defensa fins al 5 de juliol de 2019.In recent years, the PEM fuel cell technology has been incorporated to the R&D plans of many key companies in the automotive, stationary power and portable electronics sectors. However, despite current developments, the technology is not mature enough to be significantly introduced into the energy market. Performance, durability and cost are the key challenges. The performance and durability of PEM fue! cells significantly depend on variations in the concentrations of hydrogen and oxygen in the gas channels, water activity in the catalyst layers and other backing layers, water content in the polymer electrolyte membrane, as well as temperature, among other variables. Such variables exhibit intemal spatial dependence in the direction of the fuel and air streams of the anode and cathode. Highly non-uniform spatial distributions in PEM fuel cells result in local over-heating, cell flooding, accelerated ageing, and lower power output than expected. Despite the importance of spatial variations of certain variables in PEM fuel cells, not many works available in the literature target the control of spatial profiles. Most control-oriented designs use lumped-parameter models because of their simplicity and convenience for controller performance. In contrast, this Doctoral Thesis targets the distributed parameter modelling and control of PEM fuel cells. In the modelling part, the research addresses the detailed development of a non-linear distributed parameter model of a single PEM fuel cell, which incorporates the effects of spatial variations of variables that are relevant to its proper performance. The model is first used to analyse important cell intemal spatial profiles, and it is later simplified in arder to decrease its computational complexity and make it suitable for control purposes. In this task, two different model order reduction techniques are applied and compared. The purpose of the control part is to tackle water management and supply of reactants, which are two major PEM fuel cell operation challenges with important degradation consequences. In this part of the Thesis, two decentralised control strategies based on distributed parameter model predictive controllers are designed, implemented and analysed via simulation environment State observers are also designed to estímate intemal unmeasurable spatial profiles necessary for the control action. The aim of the first strategy is to monitor and control observed water activity spatial profiles on both sides of the membrana to appropriate levels. These target values are carefully chosen to combine proper membrane, catalyst layer and gas diffusion layer humídification, whilst the rate of accumulation of excess liquid water is reduced. The key objective of this approach is to decrease the frequency of water removal actions that cause disruption in the power supplied by the cell, increased parasitic losses or degradation of cell efficiency. The second strategy is a variation of the previous water activity control strategy, which includes the control of spatial distribution of gases in the fuel and air channels. This integrated solution aims to avoid starvation of reactants by controlling corresponding concentration spatial profiles. This approach is intended to prevent PEM fuel cell degradation due to corrosion mechanisms, and thennal stress caused by the consequences of reactant starvation.A pesar de los avances actuales, la tecnología de celdas de hidrógeno tipo PEM no está suficientemente preparada para ser ampliamente introducida en el mercado energético. Rendimiento, durabilidad y costo son los mayores retos. El rendimiento y la durabilidad de las celdas dependen significativamente de las variaciones en las concentraciones de hidrógeno y oxígeno en los canales de alimentación de gases, la humedad relativa en las capas catalizadoras, el contenido de agua de la membrana polimérica, así como la temperatura, entre otras variables. Dichas variables presentan dependencia espacial interna en la dirección del flujo de gases del ánodo y del cátodo. Distribuciones espaciales altamente no uniformes en algunas variables de la celda resultan en sobrecalentamiento local, inundación, degradación acelerada y menor potencia de la requerida. Muy pocos trabajos disponibles en la literatura se ocupan del control de perfiles espaciales. La mayoría de los diseños orientados a control usan modelos de parámetros concentrados que ignoran la dependencia espacial de variables internas de la celda, debido a la complejidad que añaden al funcionamiento de controladores. En contraste, esta Tesis Doctoral trata la modelización y control de parámetros distribuidos en las celdas de hidrógeno tipo PEM. En la parte de modelización, esta tesis presenta el desarrollo detallado de un modelo no lineal de parámetros distribuidos para una sola celda, el cual incorpora las variaciones espaciales de todas las variables que son relevantes para su correcto funcionamiento. El modelo se usa primero para analizar importantes perfiles espaciales internos, y luego se simplifica para reducir su complejidad computacional y adecuarlo a propósitos de control. En esta tarea se usan y se comparan dos técnicas de reducción de orden de modelos. El propósito de la parte de control es abordar la gestión de agua y el suministro de reactantes, que son dos grandes retos en el funcionamiento de las celdas con importantes consecuencias para su vida útil. En esta parte de la tesis, dos estrategias de control descentralizadas, basadas en controladores predictivos de modelos de referencia con parámetros distribuidos, son diseñadas, implementadas y analizadas en un entorno de simulación. Estas tareas incluyen también el diseño de observadores de estado que estiman los perfiles espaciales internos necesarios para la acción de control. El objetivo de la primera estrategia es monitorear y controlar perfiles espaciales observados de la humedad relativa en las capas catalizadoras para mantenerlos en niveles apropiados. Estos niveles son escogidos cuidadosamente para combinar la correcta humidificación de la membrana y las capas catalizadoras, reduciendo la velocidad de acumulación de agua líquida. El objetivo clave de este enfoque es disminuir la frecuencia de las acciones de remoción de agua dentro de la celda, ya que estas acciones causan interrupción en la potencia suministrada, aumento de las cargas parasitarias y disminución de la eficiencia. La segunda estrategia es una variación de la estrategia anterior que considera adicionalmente el control de la distribución espacial de los gases en los canales del ánodo y cátodo. Esta solución integrada tiene como objetivo evitar la ausencia local de reactantes mediante el control de perfiles espaciales de concentración de gases. Este enfoque pretende prevenir la degradación de las celdas debido a mecanismos de corrosión. Los resultados muestran un mayor rendimiento de la celda considerando los enfoques de control de perfiles espaciales propuestos en esta tesis, en comparación con técnicas de control que ignoran dichos perfiles. Además, la característica descentralizada de los esquemas de control, combinada con el uso de modelos reducidos dentro de los controladores predictivos, tiene un impacto positivo importante en el rendimiento general del control.Postprint (published version

    CHAOS SYNCHRONIZATION USING SUPER-TWISTING SLIDING MODE CONTROL APPLIED ON CHUA’S CIRCUIT

    Get PDF
    Chua’s circuit is the classic chaotic system and the most widely used in serval areas due to its potential for secure communication. However, developing an accurate chaos control strategy is one of the most challenging works for Chua’s circuit. This study proposes a new application of super twisting algorithm (STC) based on sliding mode control (SMC) to eliminate or synchronize the chaos behavior in the circuit. Therefore, the proposed control strategy is robust against uncertainty and effectively regulates the system with a good regulation tracking task. Using the Lyapunov stability, the property of asymptotical stability is verified. The whole of the system including the (control strategy, and Chua’s circuit) is implemented under a suitable test setup based on dSpace1104 to validate the effectiveness of our proposed control scheme. The experimental results show that the proposed control method can effectively eliminate or synchronize the chaos in the Chua's circuit

    Sliding mode control applied to an underactuated fuel cell system

    Get PDF
    In this work, a method for controlling a nonlinear underactuated system using augmented sliding mode control (SMC) is proposed. SMC requires inversion of the input influence matrix to derive the desired control law. In under or over actuated systems this matrix is nonsquare therefore a true inverse does not exist. The proposed control approach demonstrated in this work involves introducing a transformation matrix mapping the systems input influence matrix to a transformed system that is square and thus invertible. The proposed approach is shown to control selectable states with proper choice of the transformation matrix yielding good control performance. The methodology is applied to an underactuated nonlinear fuel cell system to show its viability in a real world application. A sliding mode controller is derived for the full nonlinear system with a switching gain accounting for modeling errors and uncertainties. Simulation results indicate the viability of the proposed control law and demonstrate the robust nature of the control law in the presence of significant modeling errors while maintaining tracking stability. Finally, the augmented SMC is compared to a traditional linear control architecture illustrating the effectiveness and advantages in tracking performance and control effort over traditional methods
    corecore